Enhancing Optoelectronic Performance of All-Inorganic Double Perovskites via Halogen Doping: Synergistic Screening Strategies and Multiscale Simulations

兴奋剂 卤素 材料科学 纳米技术 光电子学 计算机科学 化学 有机化学 烷基
作者
Xifeng Fu,Zhiying Zhao,Sai Guo,Zi‐Ang Nan,Lingyi Meng,Can‐Zhong Lu
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:20 (20): 9148-9160 被引量:4
标识
DOI:10.1021/acs.jctc.4c01115
摘要

Designing all-inorganic double perovskites through element mixing is a promising strategy to enhance their optoelectronic performance and structural stability. The complex interplay between multilevel structures and optoelectronic properties in element-mixed double perovskites necessitates further in-depth theoretical exploration. In this study, we employ screening strategies and multiscale simulations combining first-principles methods and device-scale continuum models to identify two novel element-mixed compounds, Rb2AgInCl3I3 and Cs2AgInCl3I3, as promising candidates for photovoltaic applications. These compounds exhibit favorable structural factors and suitable direct band gaps. Theoretical investigations using first-principles methods with the HSE06 functional reveal direct band gaps of 0.98 and 1.26 eV for Rb2AgInCl3I3 and Cs2AgInCl3I3, respectively, with corresponding optical absorption coefficients exceeding 105 cm-1 in the visible light range. Cs2AgInCl3I3 features high charge mobilities of approximately 20 cm2·V-1·s-1 and a notable single-junction spectroscopic limited maximum efficiency (SLME) of 25.54%. Further analysis using the device-scale continuum model simulated the nonradiative recombination effects on power conversion efficiency, integrating quantum-mechanically calculated optoelectronic properties. These theoretical investigations, which bridge composition engineering with multiscale simulations, provide valuable insights into screening novel, lead-free, halogen-mixed double metal perovskite optoelectronic devices, highlighting their potential for high-performance solar energy applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jinger发布了新的文献求助10
1秒前
1秒前
Ljx应助JUSTDOIT采纳,获得10
1秒前
Senmir完成签到,获得积分10
1秒前
脑洞疼应助JUSTDOIT采纳,获得10
1秒前
1秒前
2秒前
bkagyin应助哈机密南北撸多采纳,获得10
2秒前
deletelzr完成签到,获得积分10
2秒前
hugozzy发布了新的文献求助10
3秒前
李健的粉丝团团长应助yyy采纳,获得10
3秒前
坦率灵槐应助liutao采纳,获得10
3秒前
晰默发布了新的文献求助10
3秒前
pp完成签到,获得积分10
4秒前
梦中是片蓝色海完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
阿豪发布了新的文献求助10
5秒前
5秒前
if发布了新的文献求助10
6秒前
luo发布了新的文献求助10
6秒前
卢雨生发布了新的文献求助20
7秒前
7秒前
完美世界应助xttawy采纳,获得10
7秒前
7秒前
典雅的乐安关注了科研通微信公众号
7秒前
科研通AI6应助阿珂采纳,获得30
8秒前
linh发布了新的文献求助30
8秒前
9秒前
科研通AI6应助林新宇采纳,获得10
9秒前
趣味生煎发布了新的文献求助10
10秒前
11秒前
温柔嚣张发布了新的文献求助10
11秒前
李健的小迷弟应助if采纳,获得10
11秒前
无花果应助Jimmy Ko采纳,获得10
12秒前
12秒前
糟糕的语芹完成签到 ,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648879
求助须知:如何正确求助?哪些是违规求助? 4777004
关于积分的说明 15046015
捐赠科研通 4807773
什么是DOI,文献DOI怎么找? 2571091
邀请新用户注册赠送积分活动 1527735
关于科研通互助平台的介绍 1486650