A radiomics-based interpretable machine learning model to predict the HER2 status in bladder cancer: a multicenter study

无线电技术 医学 随机森林 神经组阅片室 支持向量机 接收机工作特性 逻辑回归 Lasso(编程语言) 试验装置 机器学习 可解释性 判别式 特征选择 模式识别(心理学) 人工智能 计算机科学 神经学 万维网 精神科
作者
Zongjie Wei,Xuesong Bai,Yingjie Xv,Shao‐Hao Chen,Siwen Yin,Yang Li,Fajin Lv,Mingzhao Xiao,Yongpeng Xie
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1) 被引量:4
标识
DOI:10.1186/s13244-024-01840-3
摘要

Abstract Objective To develop a computed tomography (CT) radiomics-based interpretable machine learning (ML) model to preoperatively predict human epidermal growth factor receptor 2 (HER2) status in bladder cancer (BCa) with multicenter validation. Methods In this retrospective study, 207 patients with pathologically confirmed BCa were enrolled and divided into the training set ( n = 154) and test set ( n = 53). Least absolute shrinkage and selection operator (LASSO) regression was used to identify the most discriminative features in the training set. Five radiomics-based ML models, namely logistic regression (LR), support vector machine (SVM), k-nearest neighbors (KNN), eXtreme Gradient Boosting (XGBoost) and random forest (RF), were developed. The predictive performance of established ML models was evaluated by the area under the receiver operating characteristic curve (AUC). The Shapley additive explanation (SHAP) was used to analyze the interpretability of ML models. Results A total of 1218 radiomics features were extracted from the nephrographic phase CT images, and 11 features were filtered for constructing ML models. In the test set, the AUCs of LR, SVM, KNN, XGBoost, and RF were 0.803, 0.709, 0.679, 0.794, and 0.815, with corresponding accuracies of 71.7%, 69.8%, 60.4%, 75.5%, and 75.5%, respectively. RF was identified as the optimal classifier. SHAP analysis showed that texture features (gray level size zone matrix and gray level co-occurrence matrix) were significant predictors of HER2 status. Conclusions The radiomics-based interpretable ML model provides a noninvasive tool to predict the HER2 status of BCa with satisfactory discriminatory performance. Critical relevance statement An interpretable radiomics-based machine learning model can preoperatively predict HER2 status in bladder cancer, potentially aiding in the clinical decision-making process. Key Points The CT radiomics model could identify HER2 status in bladder cancer. The random forest model showed a more robust and accurate performance. The model demonstrated favorable interpretability through SHAP method. Graphical Abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
深情安青应助Lillian采纳,获得10
1秒前
monsoon发布了新的文献求助10
2秒前
小丸子发布了新的文献求助30
2秒前
大个应助单薄的发卡采纳,获得10
3秒前
微笑的钧完成签到,获得积分20
4秒前
活力海云完成签到,获得积分10
4秒前
4秒前
酷波er应助yolanda采纳,获得10
8秒前
9秒前
田様应助esther颖采纳,获得10
9秒前
小丸子完成签到,获得积分10
11秒前
勇yi完成签到,获得积分10
13秒前
13秒前
柔弱尔槐完成签到,获得积分10
15秒前
leiyuekai完成签到,获得积分10
15秒前
整箱发布了新的文献求助10
15秒前
ppp发布了新的文献求助10
16秒前
null应助chuji采纳,获得10
17秒前
充电宝应助柔弱尔槐采纳,获得10
19秒前
斯文败类应助整箱采纳,获得10
19秒前
leiyuekai发布了新的文献求助10
22秒前
23秒前
田様应助Nike采纳,获得10
25秒前
Jasper应助Nike采纳,获得10
25秒前
Lucas应助Nike采纳,获得10
26秒前
orixero应助自然的晓亦采纳,获得10
28秒前
29秒前
李想完成签到,获得积分10
29秒前
练得身形似鹤形完成签到 ,获得积分10
30秒前
31秒前
34秒前
李爱国应助sinlar采纳,获得10
35秒前
柔弱尔槐发布了新的文献求助10
36秒前
38秒前
38秒前
李健应助ypli采纳,获得10
38秒前
欣慰人生完成签到,获得积分10
42秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5842793
求助须知:如何正确求助?哪些是违规求助? 6176510
关于积分的说明 15610273
捐赠科研通 4959959
什么是DOI,文献DOI怎么找? 2674055
邀请新用户注册赠送积分活动 1618895
关于科研通互助平台的介绍 1574126