A radiomics-based interpretable machine learning model to predict the HER2 status in bladder cancer: a multicenter study

无线电技术 医学 随机森林 神经组阅片室 支持向量机 接收机工作特性 逻辑回归 Lasso(编程语言) 试验装置 机器学习 可解释性 判别式 特征选择 模式识别(心理学) 人工智能 计算机科学 神经学 精神科 万维网
作者
Zongjie Wei,Xuesong Bai,Yingjie Xv,Shao‐Hao Chen,Siwen Yin,Yang Li,Fajin Lv,Mingzhao Xiao,Yongpeng Xie
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1) 被引量:2
标识
DOI:10.1186/s13244-024-01840-3
摘要

Abstract Objective To develop a computed tomography (CT) radiomics-based interpretable machine learning (ML) model to preoperatively predict human epidermal growth factor receptor 2 (HER2) status in bladder cancer (BCa) with multicenter validation. Methods In this retrospective study, 207 patients with pathologically confirmed BCa were enrolled and divided into the training set ( n = 154) and test set ( n = 53). Least absolute shrinkage and selection operator (LASSO) regression was used to identify the most discriminative features in the training set. Five radiomics-based ML models, namely logistic regression (LR), support vector machine (SVM), k-nearest neighbors (KNN), eXtreme Gradient Boosting (XGBoost) and random forest (RF), were developed. The predictive performance of established ML models was evaluated by the area under the receiver operating characteristic curve (AUC). The Shapley additive explanation (SHAP) was used to analyze the interpretability of ML models. Results A total of 1218 radiomics features were extracted from the nephrographic phase CT images, and 11 features were filtered for constructing ML models. In the test set, the AUCs of LR, SVM, KNN, XGBoost, and RF were 0.803, 0.709, 0.679, 0.794, and 0.815, with corresponding accuracies of 71.7%, 69.8%, 60.4%, 75.5%, and 75.5%, respectively. RF was identified as the optimal classifier. SHAP analysis showed that texture features (gray level size zone matrix and gray level co-occurrence matrix) were significant predictors of HER2 status. Conclusions The radiomics-based interpretable ML model provides a noninvasive tool to predict the HER2 status of BCa with satisfactory discriminatory performance. Critical relevance statement An interpretable radiomics-based machine learning model can preoperatively predict HER2 status in bladder cancer, potentially aiding in the clinical decision-making process. Key Points The CT radiomics model could identify HER2 status in bladder cancer. The random forest model showed a more robust and accurate performance. The model demonstrated favorable interpretability through SHAP method. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋的灯完成签到 ,获得积分10
5秒前
lemongulf完成签到 ,获得积分10
6秒前
小橙子完成签到 ,获得积分10
6秒前
7秒前
13秒前
ltf完成签到,获得积分10
15秒前
17秒前
20秒前
落后的夜阑完成签到,获得积分10
21秒前
22秒前
339564965完成签到,获得积分10
22秒前
newbiology完成签到 ,获得积分10
23秒前
ccc完成签到,获得积分10
23秒前
只想顺利毕业的科研狗完成签到,获得积分10
24秒前
研友_ZA2B68完成签到,获得积分10
26秒前
困困困完成签到 ,获得积分10
27秒前
klicking完成签到,获得积分10
27秒前
27秒前
led完成签到,获得积分10
28秒前
xueshidaheng完成签到,获得积分0
29秒前
EricSai完成签到,获得积分10
30秒前
chenkj完成签到,获得积分10
31秒前
Helios完成签到,获得积分10
31秒前
BK_201完成签到,获得积分10
31秒前
ikun完成签到,获得积分10
31秒前
坚定背包完成签到,获得积分10
31秒前
abiorz完成签到,获得积分0
32秒前
风信子完成签到,获得积分10
32秒前
qiaoxi完成签到,获得积分10
32秒前
窗外是蔚蓝色完成签到,获得积分0
33秒前
桥豆麻袋完成签到,获得积分10
33秒前
小康学弟完成签到 ,获得积分10
33秒前
木康薛完成签到,获得积分10
34秒前
aDou完成签到 ,获得积分10
34秒前
nanostu完成签到,获得积分10
35秒前
吐司炸弹完成签到,获得积分10
36秒前
mayfly完成签到,获得积分10
36秒前
Brief完成签到,获得积分10
36秒前
默默完成签到 ,获得积分10
37秒前
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798555
求助须知:如何正确求助?哪些是违规求助? 3344104
关于积分的说明 10318518
捐赠科研通 3060679
什么是DOI,文献DOI怎么找? 1679753
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353