A radiomics-based interpretable machine learning model to predict the HER2 status in bladder cancer: a multicenter study

无线电技术 医学 随机森林 神经组阅片室 支持向量机 接收机工作特性 逻辑回归 Lasso(编程语言) 试验装置 机器学习 可解释性 判别式 特征选择 模式识别(心理学) 人工智能 计算机科学 神经学 万维网 精神科
作者
Zongjie Wei,Xuesong Bai,Yingjie Xv,Shao‐Hao Chen,Siwen Yin,Yang Li,Fajin Lv,Mingzhao Xiao,Yongpeng Xie
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1) 被引量:4
标识
DOI:10.1186/s13244-024-01840-3
摘要

Abstract Objective To develop a computed tomography (CT) radiomics-based interpretable machine learning (ML) model to preoperatively predict human epidermal growth factor receptor 2 (HER2) status in bladder cancer (BCa) with multicenter validation. Methods In this retrospective study, 207 patients with pathologically confirmed BCa were enrolled and divided into the training set ( n = 154) and test set ( n = 53). Least absolute shrinkage and selection operator (LASSO) regression was used to identify the most discriminative features in the training set. Five radiomics-based ML models, namely logistic regression (LR), support vector machine (SVM), k-nearest neighbors (KNN), eXtreme Gradient Boosting (XGBoost) and random forest (RF), were developed. The predictive performance of established ML models was evaluated by the area under the receiver operating characteristic curve (AUC). The Shapley additive explanation (SHAP) was used to analyze the interpretability of ML models. Results A total of 1218 radiomics features were extracted from the nephrographic phase CT images, and 11 features were filtered for constructing ML models. In the test set, the AUCs of LR, SVM, KNN, XGBoost, and RF were 0.803, 0.709, 0.679, 0.794, and 0.815, with corresponding accuracies of 71.7%, 69.8%, 60.4%, 75.5%, and 75.5%, respectively. RF was identified as the optimal classifier. SHAP analysis showed that texture features (gray level size zone matrix and gray level co-occurrence matrix) were significant predictors of HER2 status. Conclusions The radiomics-based interpretable ML model provides a noninvasive tool to predict the HER2 status of BCa with satisfactory discriminatory performance. Critical relevance statement An interpretable radiomics-based machine learning model can preoperatively predict HER2 status in bladder cancer, potentially aiding in the clinical decision-making process. Key Points The CT radiomics model could identify HER2 status in bladder cancer. The random forest model showed a more robust and accurate performance. The model demonstrated favorable interpretability through SHAP method. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助BYN采纳,获得10
刚刚
zero完成签到 ,获得积分10
刚刚
1秒前
抗体小王完成签到,获得积分10
2秒前
顾矜应助读书的时候采纳,获得10
2秒前
柔弱飞槐关注了科研通微信公众号
2秒前
和尘同光发布了新的文献求助10
2秒前
aki空中飞跃完成签到,获得积分10
3秒前
3秒前
3秒前
yitongyao完成签到,获得积分20
4秒前
4秒前
王松桐发布了新的文献求助10
4秒前
思源应助bingle采纳,获得30
4秒前
3dyf完成签到,获得积分20
5秒前
5秒前
5秒前
张顾伟完成签到 ,获得积分10
6秒前
呆萌问丝完成签到,获得积分10
6秒前
mysci完成签到,获得积分10
7秒前
j7337完成签到,获得积分10
7秒前
流云完成签到,获得积分10
8秒前
向东东完成签到,获得积分10
8秒前
chen完成签到,获得积分10
9秒前
优雅的小亮完成签到,获得积分10
9秒前
夏姬宁静发布了新的文献求助10
9秒前
hahahalha完成签到,获得积分10
9秒前
10秒前
10秒前
eric888应助术师采纳,获得150
10秒前
TJTerrence完成签到,获得积分10
10秒前
慕青应助小龙采纳,获得10
10秒前
Yiaxuan发布了新的文献求助10
10秒前
高兴可乐发布了新的文献求助10
10秒前
11秒前
11秒前
lj完成签到 ,获得积分10
11秒前
11秒前
lee发布了新的文献求助10
12秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092657
求助须知:如何正确求助?哪些是违规求助? 3631418
关于积分的说明 11509690
捐赠科研通 3342272
什么是DOI,文献DOI怎么找? 1837095
邀请新用户注册赠送积分活动 904928
科研通“疑难数据库(出版商)”最低求助积分说明 822708