Task-oriented EEG denoising generative adversarial network for enhancing SSVEP-BCI performance

脑-机接口 脑电图 计算机科学 鉴别器 噪音(视频) 降噪 人工智能 任务(项目管理) 模式识别(心理学) 卷积神经网络 接口(物质) 信噪比(成像) 语音识别 工程类 图像(数学) 心理学 系统工程 电信 气泡 精神科 探测器 最大气泡压力法 并行计算
作者
Pu Zeng,Liangwei Fan,You Xin Luo,Hui Shen,Dewen Hu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
被引量:2
标识
DOI:10.1088/1741-2552/ad8963
摘要

Abstract Objective. 
The quality of electroencephalogram (EEG) signals directly impacts the performance of brain-computer interface (BCI) tasks. Many methods have been proposed to eliminate noise from EEG signals, but most of these methods focus solely on signal denoising itself, disregarding the impact on subsequent tasks, which deviates from the original intention of EEG denoising. The main objective of this study is to optimize EEG denoising models with a purpose of improving the performance of BCI tasks.
Approach.
To this end, we proposed an innovative Task-Oriented EEG Denoising Generative Adversarial Network (TOED-GAN) method. This network utilizes the generator of GAN to decompose and reconstruct clean signals from the raw EEG signals, and the discriminator to learn to distinguish the generated signals from the true clean signals, resulting in a remarkable increase of the signal-to-noise ratio (SNR) by simultaneously enhancing task-related components and removing task-irrelevant noise from the original contaminated signals.
Main results.
We evaluated the performance of the model on a public dataset and a self-collected dataset respectively, with canonical correlation analysis (CCA) classification tasks of the steady-state visual evoked potential (SSVEP) based BCI. Experimental results demonstrate that TOED-GAN exhibits excellent performance in removing EEG noise and improving performance for SSVEP-BCI, with accuracy improvement rates reaching 18.47% and 21.33% in contrast to the baseline methods of convolutional neural networks, respectively
Significance.
This work proves that the proposed TOED-GAN, as an EEG denoising method tailored for SSVEP tasks, contributes to enhancing the performance of BCIs in practical application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
spin发布了新的文献求助10
1秒前
充电宝应助吱哦周采纳,获得10
1秒前
1秒前
ding应助qiao采纳,获得10
5秒前
5秒前
咕噜发布了新的文献求助30
5秒前
CodeCraft应助fox采纳,获得10
5秒前
7秒前
7秒前
spin完成签到,获得积分10
7秒前
JFy发布了新的文献求助20
9秒前
科研通AI5应助浮流少年采纳,获得10
11秒前
kangkang0704发布了新的文献求助30
11秒前
纪尔蓝发布了新的文献求助10
12秒前
完美世界应助炙热的之瑶采纳,获得10
13秒前
思源应助yeyongchang_hit采纳,获得10
13秒前
吱哦周发布了新的文献求助10
13秒前
深情安青应助雷颖采纳,获得10
14秒前
anyy发布了新的文献求助10
14秒前
19秒前
19秒前
慕青应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
21秒前
小关完成签到,获得积分10
23秒前
咕噜发布了新的文献求助30
23秒前
ckk发布了新的文献求助10
23秒前
25秒前
Owen应助ys采纳,获得10
28秒前
天天快乐应助吱哦周采纳,获得10
32秒前
32秒前
33秒前
34秒前
36秒前
anyy完成签到,获得积分10
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795349
求助须知:如何正确求助?哪些是违规求助? 3340342
关于积分的说明 10299751
捐赠科研通 3056878
什么是DOI,文献DOI怎么找? 1677300
邀请新用户注册赠送积分活动 805357
科研通“疑难数据库(出版商)”最低求助积分说明 762457