E-SAT: An extreme learning machine based self attention approach for decoding motor imagery EEG in subject-specific tasks

运动表象 解码方法 计算机科学 脑电图 主题(文档) 人工智能 极限学习机 脑-机接口 认知心理学 语音识别 心理学 机器学习 算法 人工神经网络 万维网 精神科
作者
Muhammad Ahmed Abbasi,Hafza Faiza Abbasi,Xiaojun Yu,Muhammad Zulkifal Aziz,Nicole Tye June Yih Yih,Zeming Fan
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (5): 056033-056033
标识
DOI:10.1088/1741-2552/ad83f4
摘要

The advancements in Brain-Computer Interface (BCI) have substantially evolved people's lives by enabling direct communication between the human brain and external peripheral devices. In recent years, the integration of machine larning (ML) and deep learning (DL) models have considerably imrpoved the performances of BCIs for decoding the motor imagery (MI) tasks. However, there still exist several limitations, e.g., extensive training time and high sensitivity to noises or outliers with those existing models, which largely hinder the rapid developments of BCIs. To address such issues, this paper proposes a novel extreme learning machine (ELM) based self-attention (E-SAT) mechanism to enhance subject-specific classification performances. Specifically, for E-SAT, ELM is employed both to imrpove self-attention module generalization ability for feature extraction and to optimize the model's parameter initialization process. Meanwhile, the extracted features are also classified using ELM, and the end-to-end ELM based setup is used to evaluate E-SAT performances on different MI EEG signals. Extensive experiments with different datasets, such as BCI Competition III Dataset IV-a, IV-b and BCI Competition IV Datasets 1,2a,2b,3, are conducted to verify the effectiveness of proposed E-SAT strategy. Results show that E-SAT outperforms several state-of-the-art (SOTA) existing methods in subject-specific classification on all the datasets, with an average classification accuracy of 99.8%,99.1%,98.9%,75.8%, 90.8%, and 95.4%, being achieved for each datasets, respectively. The experimental results not only show outstanding performance of E-SAT in feature extractions, but also demonstrate that it helps achieves the best results among nine other robust ones. In addition, results in this study also demonstrate that E-SAT achieves exceptional performance in both binary and multi-class classification tasks, as well as for noisy and non-noisy datatsets. .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净士晋完成签到 ,获得积分10
刚刚
spy完成签到 ,获得积分10
刚刚
JJ完成签到 ,获得积分10
1秒前
默默地读文献完成签到,获得积分0
3秒前
她的城完成签到,获得积分0
4秒前
仁爱觅风完成签到,获得积分10
8秒前
8秒前
东郭聪健发布了新的文献求助10
13秒前
15秒前
北城完成签到 ,获得积分10
20秒前
dong完成签到 ,获得积分10
22秒前
QP34完成签到 ,获得积分10
22秒前
123完成签到,获得积分10
23秒前
知行者完成签到 ,获得积分10
24秒前
guaishou完成签到,获得积分10
24秒前
摆哥完成签到,获得积分10
30秒前
十月完成签到 ,获得积分10
35秒前
36秒前
流星雨完成签到 ,获得积分10
39秒前
41秒前
在九月完成签到 ,获得积分10
41秒前
42秒前
lihuanmoon完成签到,获得积分10
43秒前
温婉的凡阳完成签到 ,获得积分10
44秒前
andy发布了新的文献求助10
44秒前
Dotson完成签到,获得积分10
45秒前
小事完成签到 ,获得积分10
46秒前
LLLW发布了新的文献求助10
47秒前
居崽完成签到 ,获得积分10
49秒前
你可真下饭完成签到 ,获得积分10
49秒前
所所应助andy采纳,获得10
50秒前
个性仙人掌完成签到 ,获得积分10
51秒前
Young完成签到 ,获得积分10
52秒前
qwe完成签到,获得积分10
52秒前
雪妮完成签到 ,获得积分10
54秒前
科研通AI2S应助科研通管家采纳,获得30
55秒前
cdercder应助科研通管家采纳,获得10
55秒前
55秒前
科研通AI2S应助初心采纳,获得10
1分钟前
米里迷路完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798555
求助须知:如何正确求助?哪些是违规求助? 3344104
关于积分的说明 10318518
捐赠科研通 3060679
什么是DOI,文献DOI怎么找? 1679753
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353