Comprehensive review of deep learning in orthopaedics: Applications, challenges, trustworthiness, and fusion

计算机科学 骨科手术 可解释性 医学诊断 人工智能 骨关节炎 多样性(控制论) 医学 机器学习 外科 病理 替代医学
作者
Laith Alzubaidi,Khamael Al-Dulaimi,Asma Salhi,Zaenab Alammar,Mohammed A. Fadhel,A. S. Albahri,A.H. Alamoodi,O. S. Albahri,Amjad F. Hasan,Jinshuai Bai,Luke Gilliland,Jing Peng,Marco Branni,Tristan Shuker,Kenneth Cutbush,José Santamaría,Catarina Moreira,Chun Ouyang,Ye Duan,Mohamed Manoufali
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:155: 102935-102935 被引量:29
标识
DOI:10.1016/j.artmed.2024.102935
摘要

Deep learning (DL) in orthopaedics has gained significant attention in recent years. Previous studies have shown that DL can be applied to a wide variety of orthopaedic tasks, including fracture detection, bone tumour diagnosis, implant recognition, and evaluation of osteoarthritis severity. The utilisation of DL is expected to increase, owing to its ability to present accurate diagnoses more efficiently than traditional methods in many scenarios. This reduces the time and cost of diagnosis for patients and orthopaedic surgeons. To our knowledge, no exclusive study has comprehensively reviewed all aspects of DL currently used in orthopaedic practice. This review addresses this knowledge gap using articles from Science Direct, Scopus, IEEE Xplore, and Web of Science between 2017 and 2023. The authors begin with the motivation for using DL in orthopaedics, including its ability to enhance diagnosis and treatment planning. The review then covers various applications of DL in orthopaedics, including fracture detection, detection of supraspinatus tears using MRI, osteoarthritis, prediction of types of arthroplasty implants, bone age assessment, and detection of joint-specific soft tissue disease. We also examine the challenges for implementing DL in orthopaedics, including the scarcity of data to train DL and the lack of interpretability, as well as possible solutions to these common pitfalls. Our work highlights the requirements to achieve trustworthiness in the outcomes generated by DL, including the need for accuracy, explainability, and fairness in the DL models. We pay particular attention to fusion techniques as one of the ways to increase trustworthiness, which have also been used to address the common multimodality in orthopaedics. Finally, we have reviewed the approval requirements set forth by the US Food and Drug Administration to enable the use of DL applications. As such, we aim to have this review function as a guide for researchers to develop a reliable DL application for orthopaedic tasks from scratch for use in the market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hewd3发布了新的文献求助10
1秒前
宽宽发布了新的文献求助50
1秒前
机灵的衬衫完成签到 ,获得积分10
1秒前
2秒前
爆米花应助Howll采纳,获得10
2秒前
2秒前
2秒前
xiaosun完成签到,获得积分10
3秒前
ZhaoCun发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
浮游应助Twistzz采纳,获得80
4秒前
5秒前
5秒前
5秒前
freedom完成签到,获得积分10
6秒前
6秒前
迷路远航完成签到,获得积分10
6秒前
6秒前
CipherSage应助kily采纳,获得10
7秒前
天蓝完成签到,获得积分10
7秒前
爆米花应助喵喵喵采纳,获得10
7秒前
8秒前
万能图书馆应助yang采纳,获得10
8秒前
宽宽完成签到,获得积分10
8秒前
黄鱼面发布了新的文献求助10
9秒前
吃狗粮的猫完成签到 ,获得积分10
9秒前
ZhaoCun完成签到,获得积分10
9秒前
拼搏忆文发布了新的文献求助30
10秒前
滴滴答答完成签到 ,获得积分10
11秒前
科研通AI5应助清脆的书桃采纳,获得10
12秒前
13秒前
1111111发布了新的文献求助10
13秒前
13秒前
yio完成签到,获得积分10
14秒前
科研通AI2S应助foxp3采纳,获得10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
黄鱼面完成签到,获得积分10
17秒前
yio发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886324
求助须知:如何正确求助?哪些是违规求助? 4171259
关于积分的说明 12944161
捐赠科研通 3931774
什么是DOI,文献DOI怎么找? 2157191
邀请新用户注册赠送积分活动 1175636
关于科研通互助平台的介绍 1080152