SCSA: Exploring the Synergistic Effects Between Spatial and Channel Attention

频道(广播) 心理学 认知心理学 计算机科学 电信
作者
Yunzhong Si,Huiying Xu,Xinzhong Zhu,Wenhao Zhang,Yao Dong,Yuxing Chen,Hongbo Li
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2407.05128
摘要

Channel and spatial attentions have respectively brought significant improvements in extracting feature dependencies and spatial structure relations for various downstream vision tasks. While their combination is more beneficial for leveraging their individual strengths, the synergy between channel and spatial attentions has not been fully explored, lacking in fully harness the synergistic potential of multi-semantic information for feature guidance and mitigation of semantic disparities. Our study attempts to reveal the synergistic relationship between spatial and channel attention at multiple semantic levels, proposing a novel Spatial and Channel Synergistic Attention module (SCSA). Our SCSA consists of two parts: the Shareable Multi-Semantic Spatial Attention (SMSA) and the Progressive Channel-wise Self-Attention (PCSA). SMSA integrates multi-semantic information and utilizes a progressive compression strategy to inject discriminative spatial priors into PCSA's channel self-attention, effectively guiding channel recalibration. Additionally, the robust feature interactions based on the self-attention mechanism in PCSA further mitigate the disparities in multi-semantic information among different sub-features within SMSA. We conduct extensive experiments on seven benchmark datasets, including classification on ImageNet-1K, object detection on MSCOCO 2017, segmentation on ADE20K, and four other complex scene detection datasets. Our results demonstrate that our proposed SCSA not only surpasses the current state-of-the-art attention but also exhibits enhanced generalization capabilities across various task scenarios. The code and models are available at: https://github.com/HZAI-ZJNU/SCSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴颖完成签到,获得积分10
刚刚
刚刚
Hello应助huangyi采纳,获得10
1秒前
panfan发布了新的文献求助10
2秒前
研友_Z6WWQ8发布了新的文献求助10
2秒前
2秒前
2秒前
领导范儿应助靓丽冬灵采纳,获得10
2秒前
AbOO发布了新的文献求助10
2秒前
完美世界应助罗大壮采纳,获得10
3秒前
conny完成签到,获得积分10
3秒前
研友_VZG7GZ应助要减肥采纳,获得10
3秒前
乐乐应助sunningbird采纳,获得10
4秒前
4秒前
一二三完成签到,获得积分20
4秒前
宋宋发布了新的文献求助10
5秒前
头发茂密的我完成签到,获得积分10
5秒前
所所应助GBRUCE采纳,获得30
6秒前
余姚发布了新的文献求助10
6秒前
王哇噻完成签到 ,获得积分10
6秒前
酷炫煎饼完成签到,获得积分10
6秒前
凶凶发布了新的文献求助10
7秒前
核桃应助Sonezeroone采纳,获得30
7秒前
研友_Z6WWQ8完成签到,获得积分10
8秒前
牛战士从不摘下面具完成签到,获得积分10
8秒前
Pattis完成签到 ,获得积分10
8秒前
王王秃头完成签到,获得积分10
9秒前
zerovb3完成签到,获得积分20
9秒前
文艺冰露发布了新的文献求助10
9秒前
10秒前
10秒前
神勇初瑶发布了新的文献求助10
10秒前
高贵紫丝发布了新的文献求助10
10秒前
lsying完成签到,获得积分20
10秒前
11秒前
无花果应助白日梦想家采纳,获得30
11秒前
11秒前
科研通AI5应助称心的御姐采纳,获得10
12秒前
李健应助旗树树采纳,获得10
12秒前
科研通AI5应助chen采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4463364
求助须知:如何正确求助?哪些是违规求助? 3926073
关于积分的说明 12183349
捐赠科研通 3578665
什么是DOI,文献DOI怎么找? 1966124
邀请新用户注册赠送积分活动 1004816
科研通“疑难数据库(出版商)”最低求助积分说明 899227