数量结构-活动关系
微塑料
机器学习
人工智能
细胞毒性
Boosting(机器学习)
预测建模
计算机科学
毒性
领域(数学)
化学
数学
环境化学
生物化学
有机化学
体外
纯数学
作者
Chengze Liu,Cheng Zong,Shuang Chen,Jiangliang Chu,Yifan Yang,Yong Pan,Beilei Yuan,Huazhong Zhang
出处
期刊:Toxicology
[Elsevier BV]
日期:2024-08-11
卷期号:508: 153918-153918
被引量:4
标识
DOI:10.1016/j.tox.2024.153918
摘要
In the field of microplastics (MPs) toxicity prediction, machine learning (ML) computer simulation techniques are showing great potential. In this study, six ML algorithms were utilized to predict the toxicity of MPs on BEAS-2B cells based on quantitative structure-activity relationship (QSAR) models. Comparing the models of different algorithms, the extreme gradient boosting model showed the best fit and prediction performance (R
科研通智能强力驱动
Strongly Powered by AbleSci AI