Explainable Artificial Intelligence for Early Prediction of Pressure Injury Risk

可解释性 仪表板 人工智能 医学 机器学习 接收机工作特性 重症监护 风险评估 集合预报 计算机科学 数据科学 重症监护医学 计算机安全
作者
Jenny Alderden,Jace D. Johnny,Katie Brooks,Andrew Gordon Wilson,Tracey L. Yap,Yunchuan Zhao,Mark van der Laan,Susan M. Kennerly
出处
期刊:American Journal of Critical Care [American Association of Critical-Care Nurses]
卷期号:33 (5): 373-381 被引量:2
标识
DOI:10.4037/ajcc2024856
摘要

Background Hospital-acquired pressure injuries (HAPIs) have a major impact on patient outcomes in intensive care units (ICUs). Effective prevention relies on early and accurate risk assessment. Traditional risk-assessment tools, such as the Braden Scale, often fail to capture ICU-specific factors, limiting their predictive accuracy. Although artificial intelligence models offer improved accuracy, their “black box” nature poses a barrier to clinical adoption. Objective To develop an artificial intelligence–based HAPI risk-assessment model enhanced with an explainable artificial intelligence dashboard to improve interpretability at both the global and individual patient levels. Methods An explainable artificial intelligence approach was used to analyze ICU patient data from the Medical Information Mart for Intensive Care. Predictor variables were restricted to the first 48 hours after ICU admission. Various machine-learning algorithms were evaluated, culminating in an ensemble “super learner” model. The model’s performance was quantified using the area under the receiver operating characteristic curve through 5-fold cross-validation. An explainer dashboard was developed (using synthetic data for patient privacy), featuring interactive visualizations for in-depth model interpretation at the global and local levels. Results The final sample comprised 28 395 patients with a 4.9% incidence of HAPIs. The ensemble super learner model performed well (area under curve = 0.80). The explainer dashboard provided global and patient-level interactive visualizations of model predictions, showing each variable’s influence on the risk-assessment outcome. Conclusion The model and its dashboard provide clinicians with a transparent, interpretable artificial intelligence–based risk-assessment system for HAPIs that may enable more effective and timely preventive interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赵文若发布了新的文献求助10
1秒前
4秒前
彭洪凯完成签到,获得积分10
5秒前
天天快乐应助尊敬的飞槐采纳,获得20
5秒前
奋斗的飞薇完成签到,获得积分10
7秒前
浮萍完成签到,获得积分10
8秒前
宗嘻嘻发布了新的文献求助10
9秒前
10秒前
小兮发布了新的文献求助10
14秒前
简单寄云完成签到 ,获得积分20
16秒前
拉赫马尼洛夫完成签到,获得积分10
18秒前
19秒前
19秒前
桐桐应助咻咻咻采纳,获得10
20秒前
20秒前
踏实的老四完成签到,获得积分10
21秒前
XXGG完成签到 ,获得积分10
21秒前
小二郎应助刘玲采纳,获得10
22秒前
Ava应助既晓采纳,获得10
23秒前
小兮完成签到,获得积分10
24秒前
研友_nv45w8发布了新的文献求助10
25秒前
小鲤鱼完成签到 ,获得积分10
25秒前
Orange应助科研通管家采纳,获得30
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
阿泽发布了新的文献求助10
27秒前
白茶完成签到 ,获得积分10
29秒前
29秒前
29秒前
sunnyfish007发布了新的文献求助10
31秒前
31秒前
32秒前
33秒前
33秒前
嘻鱼徐发布了新的文献求助10
34秒前
希望天下0贩的0应助anan0419采纳,获得30
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780526
求助须知:如何正确求助?哪些是违规求助? 3326007
关于积分的说明 10225152
捐赠科研通 3041089
什么是DOI,文献DOI怎么找? 1669166
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669