A granular sigmoid extreme learning machine and its application in a weather forecast

极限学习机 乙状窦函数 计算机科学 人工智能 特征(语言学) 支持向量机 机器学习 粒度计算 算法 前馈神经网络 粗集 人工神经网络 数据挖掘 语言学 哲学
作者
Hailiang Jiang,Yumin Chen,Hongbo Jiang,Yue Ni,Huijun Su
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:: 110799-110799
标识
DOI:10.1016/j.asoc.2023.110799
摘要

Extreme Learning Machine (ELM) is a class of machine learning systems or methods based on feedforward neural networks, which are suitable for supervised learning problems. The ELM is regarded as a special kind of FNN in the research, which is characterized by the fact that the weights of hidden layer nodes are randomly or artificially given. As a result, the ELM feature mapping is random. The generic approximation theorem states that any nonlinear piecewise continuous function may be used as the feature map. By introducing the theory of granular computing, this paper proposes a new granulation method of random sigmoid function. The Granular Sigmoid Extreme Learning Machine (GSELM) algorithm was proposed by combining the random sigmoid function with the extreme learning machine algorithm. After granulated data sets are processed by GSELM, the granulated multi-feature data will form granular vectors. The granular vector is processed in parallel, which makes the granular sigmoid extreme learning machine parallel computing. The GSELM is utilized to address the fundamental real-time issue of weather forecasting. The GSELM algorithm can predict whether the next day will be sunny or rainy more accurately and quickly, which is crucial to the field of meteorology. Several UCI data sets are used to test the feasibility of the GSELM algorithm. The verified GSELM algorithm is applied to the Australian weather forecast data set. According to the experimental findings, the GSELM algorithm can predict whether the next day will be sunny or rainy more accurately and quickly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秋发布了新的文献求助10
1秒前
1秒前
zzww发布了新的文献求助10
2秒前
2秒前
斯文败类应助王碱采纳,获得10
2秒前
自由滑大王完成签到 ,获得积分10
3秒前
可爱的函函应助内向冰绿采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
共享精神应助激昂的夏槐采纳,获得10
6秒前
7秒前
8秒前
8秒前
8秒前
灵巧鑫发布了新的文献求助10
9秒前
9秒前
共享精神应助yuyuyuyu采纳,获得30
9秒前
西粤学发布了新的文献求助20
10秒前
11秒前
kulo发布了新的文献求助10
12秒前
Sugarm发布了新的文献求助10
13秒前
神勇的罡发布了新的文献求助10
13秒前
13秒前
共享精神应助玉襄采纳,获得10
15秒前
出门见喜发布了新的文献求助10
15秒前
15秒前
酷波er应助Yanning采纳,获得10
16秒前
聂亦发布了新的文献求助10
16秒前
16秒前
华仔应助亦L采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
大模型应助Han采纳,获得10
19秒前
勤劳幻竹发布了新的文献求助10
20秒前
20秒前
林子发布了新的文献求助10
20秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533094
求助须知:如何正确求助?哪些是违规求助? 4621559
关于积分的说明 14578975
捐赠科研通 4561617
什么是DOI,文献DOI怎么找? 2499392
邀请新用户注册赠送积分活动 1479257
关于科研通互助平台的介绍 1450500