已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of CT-based radiomics deep learning signatures to predict lymph node metastasis in non-functional pancreatic neuroendocrine tumors: a multicohort study

医学 无线电技术 淋巴结转移 神经内分泌肿瘤 淋巴结 放射科 转移 肿瘤科 病理 内科学 癌症
作者
Wenchao Gu,Yingli Chen,Hai-Bin Zhu,Haidi Chen,Zongcheng Yang,Shaocong Mo,Hongyue Zhao,Lei Chen,Takahito Nakajima,Xianjun Yu,Shunrong Ji,YaJia Gu,Jie Chen,Wei Shuong Tang
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:65: 102269-102269 被引量:22
标识
DOI:10.1016/j.eclinm.2023.102269
摘要

Lymph node status is an important factor for the patients with non-functional pancreatic neuroendocrine tumors (NF-PanNETs) with respect to the surgical methods, prognosis, recurrence. Our aim is to develop and validate a combination model based on contrast-enhanced CT images to predict the lymph node metastasis (LNM) in NF-PanNETs.Retrospective data were gathered for 320 patients with NF-PanNETs who underwent curative pancreatic resection and CT imaging at two institutions (Center 1, n = 236 and Center 2, n = 84) between January 2010 and March 2022. RDPs (Radiomics deep learning signature) were developed based on ten machine-learning techniques. These signatures were integrated with the clinicopathological factors into a nomogram for clinical applications. The evaluation of the model's performance was conducted through the metrics of the area under the curve (AUC).The RDPs showed excellent performance in both centers with a high AUC for predicting LNM and disease-free survival (DFS) in Center 1 (AUC, 0.88; 95% CI: 0.84-0.92; DFS, p < 0.05) and Center 2 (AUC, 0.91; 95% CI: 0.85-0.97; DFS, p < 0.05). The clinical factors of vascular invasion, perineural invasion, and tumor grade were associated with LNM (p < 0.05). The combination nomogram showed better prediction capability for LNM (AUC, 0.93; 95% CI: 0.89-0.96). Notably, our model maintained a satisfactory predictive ability for tumors at the 2-cm threshold, demonstrating its effectiveness across different tumor sizes in Center 1 (≤2 cm: AUC, 0.90 and >2 cm: AUC, 0.86) and Center 2 (≤2 cm: AUC, 0.93 and >2 cm: AUC, 0.91).Our RDPs may have the potential to preoperatively predict LNM in NF-PanNETs, address the insufficiency of clinical guidelines concerning the 2-cm threshold for tumor lymph node dissection, and provide precise therapeutic strategies.This work was supported by JSPS KAKENHI Grant Number JP22K20814; the Rare Tumor Research Special Project of the National Natural Science Foundation of China (82141104) and Clinical Research Special Project of Shanghai Municipal Health Commission (202340123).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
嘻嘻完成签到,获得积分10
8秒前
mini完成签到,获得积分10
9秒前
嘻嘻哈哈发布了新的文献求助110
12秒前
12秒前
逃之姚姚完成签到 ,获得积分10
14秒前
细心帽子完成签到 ,获得积分10
19秒前
SciGPT应助长情白柏采纳,获得10
20秒前
20秒前
所所应助lifengxia采纳,获得10
24秒前
研友_V8Qmr8发布了新的文献求助10
24秒前
25秒前
CC柚完成签到 ,获得积分10
25秒前
26秒前
28秒前
28秒前
答不溜发布了新的文献求助10
28秒前
29秒前
31秒前
长情白柏发布了新的文献求助10
31秒前
DD发布了新的文献求助10
34秒前
lifengxia发布了新的文献求助10
34秒前
Elthrai完成签到 ,获得积分10
35秒前
研友_V8Qmr8完成签到,获得积分10
37秒前
酷波er应助小王子采纳,获得10
38秒前
39秒前
赵娜完成签到,获得积分20
39秒前
优美的小笨蛋应助DD采纳,获得10
40秒前
答不溜完成签到,获得积分10
41秒前
42秒前
知性的成完成签到 ,获得积分10
42秒前
赵娜发布了新的文献求助10
42秒前
韦鑫龙完成签到,获得积分10
42秒前
44秒前
46秒前
ASD应助嘻嘻哈哈采纳,获得80
47秒前
chili发布了新的文献求助10
49秒前
49秒前
52秒前
底层特律完成签到,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426242
求助须知:如何正确求助?哪些是违规求助? 4540046
关于积分的说明 14171474
捐赠科研通 4457840
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435630
关于科研通互助平台的介绍 1413164