避碰
控制理论(社会学)
碰撞
职位(财务)
最优控制
计算机科学
微分博弈
控制器(灌溉)
有界函数
MATLAB语言
鲁棒控制
功能(生物学)
非线性系统
人工神经网络
控制(管理)
控制系统
数学优化
工程类
数学
人工智能
物理
计算机安全
数学分析
生物
操作系统
量子力学
进化生物学
农学
财务
电气工程
经济
作者
Ning Li,Hongbin Wang,Qianda Luo,Wei Zheng
摘要
Abstract This paper investigates the robust optimal formation control for the position subsystem of quadrotor unmanned aerial vehicles (UAVs) subject to external disturbances and collision constraints. To prevent collision with both members of the formation and external obstacles, a collision avoidance potential function is constructed using relative position and velocity information. The basic bounded control input can ensure the stable flight and collision avoidance of a quadrotor UAV system. Based on the approximate dynamic programming (ADP) framework and two‐player zero‐sum differential game theory, the optimal controller is designed to further enhance the control performance of the system. The optimal value function is approximated by a single layer neural network, which avoids solving complex nonlinear Hamilton‐JacobiIsaac (HJI) equation. The stability of the closed loop system is proved. The effectiveness of the robust optimal formation controller based on learning is validated through MATLAB simulation in two distinct scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI