HiSIF-DTA: A Hierarchical Semantic Information Fusion Framework for Drug-Target Affinity Prediction

计算机科学 信息融合 人工智能 药品 融合 传感器融合 情报检索 数据挖掘 自然语言处理 模式识别(心理学) 医学 药理学 哲学 语言学
作者
Xiangpeng Bi,Shugang Zhang,Wenjian Ma,Huasen Jiang,Zhiqiang Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1579-1590 被引量:8
标识
DOI:10.1109/jbhi.2023.3334239
摘要

Accurately identifying drug-target affinity (DTA) plays a significant role in promoting drug discovery and has attracted increasing attention in recent years. Exploring appropriate protein representation methods and increasing the abundance of protein information is critical in enhancing the accuracy of DTA prediction. Recently, numerous deep learning-based models have been proposed to utilize the sequential or structural features of target proteins. However, these models capture only the low-order semantics that exist in a single protein, while the high-order semantics abundant in biological networks are largely ignored. In this article, we propose HiSIF-DTA'a hierarchical semantic information fusion framework for DTA prediction. In this framework, a hierarchical protein graph is constructed that includes not only contact maps as low-order structural semantics but also protein-rotein interaction (PPI) networks as high-order functional semantics. Particularly, two distinct hierarchical fusion strategies (i.e., Top-down and Bottom-Up ) are designed to integrate the different protein semantics, therefore contributing to a richer protein representation. Comprehensive experimental results demonstrate that HiSIF-DTA outperforms current state-of-the-art methods for prediction on the benchmark datasets of the DTA task. Further validation on binary tasks and visualization analysis demonstrates the generalization and interpretation abilities of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子訡发布了新的文献求助10
刚刚
情怀应助奋斗若风采纳,获得10
1秒前
1秒前
cloudy90发布了新的文献求助10
2秒前
2秒前
3秒前
丘比特应助Heather采纳,获得10
3秒前
3秒前
3秒前
zz完成签到,获得积分10
4秒前
玉汝于成发布了新的文献求助10
4秒前
毛豆爸爸完成签到 ,获得积分0
4秒前
善学以致用应助My采纳,获得10
5秒前
次忆完成签到,获得积分10
5秒前
5秒前
浅音发布了新的文献求助10
7秒前
Zzzooo发布了新的文献求助30
7秒前
7秒前
斯文败类应助求助人采纳,获得10
7秒前
土豆泥巧克力完成签到,获得积分10
8秒前
Akim应助葱花和香菜采纳,获得10
8秒前
one发布了新的文献求助10
8秒前
开心彩虹发布了新的文献求助10
9秒前
代纤绮完成签到,获得积分10
9秒前
9秒前
10秒前
欣欣向荣发布了新的文献求助10
10秒前
雨也箫潇完成签到,获得积分10
10秒前
跳跃隶完成签到,获得积分10
12秒前
12秒前
33完成签到,获得积分10
12秒前
华仔应助Zzzooo采纳,获得10
13秒前
13秒前
13秒前
大个应助任博文采纳,获得10
14秒前
orixero应助Galato采纳,获得10
14秒前
科研通AI5应助勤奋静曼采纳,获得10
15秒前
专注的老太完成签到,获得积分10
15秒前
人机完成签到,获得积分10
15秒前
JamesPei应助迷路荷花采纳,获得10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809937
求助须知:如何正确求助?哪些是违规求助? 3354482
关于积分的说明 10371171
捐赠科研通 3070884
什么是DOI,文献DOI怎么找? 1686607
邀请新用户注册赠送积分活动 811030
科研通“疑难数据库(出版商)”最低求助积分说明 766484