柯肯德尔效应
催化作用
化学
电子转移
零价铁
化学工程
材料科学
物理化学
冶金
吸附
工程类
生物化学
作者
Jianhua Qu,Zhuoran Li,Fuxuan Bi,Xiubo Zhang,Bo Zhang,Kaige Li,Siqi Wang,Mingze Sun,Jun Ma,Ying Zhang
标识
DOI:10.1073/pnas.2304552120
摘要
Nanosized zero-valent iron (nZVI) is a promising persulfate (PS) activator, however, its structurally dense oxide shell seriously inhibited electrons transfer for O-O bond cleavage of PS. Herein, we introduced sulfidation and phosphorus-doped biochar for breaking the pristine oxide shell with formation of FeS and FePO 4 -containing mixed shell. In this case, the faster diffusion rate of iron atoms compared to shell components triggered multiple Kirkendall effects, causing inward fluxion of vacancies with further coalescing into radial nanocracks. Exemplified by trichloroethylene (TCE) removal, such a unique “lemon-slice-like” nanocrack structure favored fast outward transfer of electrons and ferrous ions across the mixed shell to PS activation for high-efficient generation and utilization of reactive species, as evidenced by effective dechlorination (90.6%) and mineralization (85.4%) of TCE. O 2 • - contributed most to TCE decomposition, moreover, the SnZVI@PBC gradually became electron-deficient and thus extracted electrons from TCE with achieving nonradical-based degradation. Compared to nZVI/PS process, the SnZVI@PBC/PS system could significantly reduce catalyst dosage (87.5%) and PS amount (68.8%) to achieve nearly complete TCE degradation, and was anti-interference, stable, and pH-universal. This study advanced mechanistic understandings of multiple Kirkendall effects-triggered nanocrack formation on nZVI with corresponding rational design of Fenton-like catalysts for organics degradation.
科研通智能强力驱动
Strongly Powered by AbleSci AI