Machine Learning–Based Magnetic Resonance Radiomics Analysis for Predicting Low- and High-Grade Clear Cell Renal Cell Carcinoma

医学 无线电技术 磁共振成像 随机森林 肾透明细胞癌 接收机工作特性 肾细胞癌 有效扩散系数 磁共振弥散成像 放射科 核医学 人工智能 病理 内科学 计算机科学
作者
Ki Choon Sim,Na Han,Yongwon Cho,Deuk Jae Sung,Beom Jin Park,Min Ju Kim,Yeo Eun Han
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:47 (6): 873-881 被引量:3
标识
DOI:10.1097/rct.0000000000001453
摘要

To explore whether high- and low-grade clear cell renal cell carcinomas (ccRCC) can be distinguished using radiomics features extracted from magnetic resonance imaging.In this retrospective study, 154 patients with pathologically proven clear ccRCC underwent contrast-enhanced 3 T magnetic resonance imaging and were assigned to the development (n = 122) and test (n = 32) cohorts in a temporal-split setup. A total of 834 radiomics features were extracted from whole-tumor volumes using 3 sequences: T2-weighted imaging (T2WI), diffusion-weighted imaging, and contrast-enhanced T1-weighted imaging. A random forest regressor was used to extract important radiomics features that were subsequently used for model development using the random forest algorithm. Tumor size, apparent diffusion coefficient value, and percentage of tumor-to-renal parenchymal signal intensity drop in the tumors were recorded by 2 radiologists for quantitative analysis. The area under the receiver operating characteristic curve (AUC) was generated to predict ccRCC grade.In the development cohort, the T2WI-based radiomics model demonstrated the highest performance (AUC, 0.82). The T2WI-based radiomics and radiologic feature hybrid model showed AUCs of 0.79 and 0.83, respectively. In the test cohort, the T2WI-based radiomics model achieved an AUC of 0.82. The range of AUCs of the hybrid model of T2WI-based radiomics and radiologic features was 0.73 to 0.80.Magnetic resonance imaging-based classifier models using radiomics features and machine learning showed satisfactory diagnostic performance in distinguishing between high- and low-grade ccRCC, thereby serving as a helpful noninvasive tool for predicting ccRCC grade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老广发布了新的文献求助10
刚刚
3秒前
可靠的雪青完成签到 ,获得积分10
4秒前
LHL发布了新的文献求助10
5秒前
脑洞疼应助LHL采纳,获得10
9秒前
香蕉觅云应助清新的音响采纳,获得10
12秒前
科研通AI5应助轻松小张采纳,获得10
12秒前
佰斯特威应助pengyh8采纳,获得10
15秒前
16秒前
bkagyin应助Xx采纳,获得10
17秒前
nnnnnn完成签到 ,获得积分10
20秒前
天天快乐应助可靠的映阳采纳,获得10
23秒前
24秒前
24秒前
清爽小白菜完成签到,获得积分10
24秒前
ding应助科研通管家采纳,获得10
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
CipherSage应助科研通管家采纳,获得10
25秒前
小白应助科研通管家采纳,获得10
25秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得30
25秒前
小白应助科研通管家采纳,获得10
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
顾矜应助科研通管家采纳,获得10
25秒前
Pothos应助科研通管家采纳,获得10
26秒前
小白应助科研通管家采纳,获得10
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
酷波er应助科研通管家采纳,获得10
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
所所应助nnnnnn采纳,获得10
26秒前
我是老大应助Alex采纳,获得10
28秒前
28秒前
轻松小张发布了新的文献求助10
30秒前
QL发布了新的文献求助10
30秒前
Nzee完成签到,获得积分10
30秒前
33秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777324
求助须知:如何正确求助?哪些是违规求助? 3322593
关于积分的说明 10210806
捐赠科研通 3037943
什么是DOI,文献DOI怎么找? 1666984
邀请新用户注册赠送积分活动 797900
科研通“疑难数据库(出版商)”最低求助积分说明 758072