Boosting Energy Storage Performance of Co–Mn Oxide Nanostructures by Ultraviolet Radiation in Hybrid Supercapacitors

超级电容器 材料科学 氧化物 氧化钴 化学工程 石墨烯 兴奋剂 电化学 电极 纳米技术 光电子学 化学 冶金 物理化学 工程类
作者
Jinyu Wu,Lei Yan,Haifu Huang,Yongfang Liang,C. Li,Fulin Yuan,Xianqing Liang,Wenzheng Zhou,Jiao Guo
出处
期刊:ACS applied nano materials [American Chemical Society]
标识
DOI:10.1021/acsanm.3c03004
摘要

Cobalt–manganese oxide is a promising electrode material for supercapacitors due to its high theoretical capacity. However, poor electrical conductivity and structural stability limit the energy storage capacity of the Co–Mn oxide material. Herein, an ultraviolet (UV) light radiation strategy is proposed to prepare nitrogen-doped Co–Mn mixed oxide nanoarrays with enhanced electrochemical energy storage for supercapacitors. Co–Mn mixed oxide nanoarrays were first prepared by the hydrothermal method and then irradiated by a UV lamp to induce nitrogen doping. Because of the nanowire array architecture and UV-induced nitrogen doping, the obtained N-doped Co–Mn oxide shows a boosted charge storage performance with specific capacity of 2534 F g–1 (6.28 F cm–2) at 1 mA cm–2 and improved cyclic stability. Even without nitrogen doping, Co–Mn mixed oxide irradiated by UV light still has a high specific capacity of 1940 F g–1 at 1 mA cm–2 and good rate performance (1267 F g–1 at 60 mA cm–2), which is better than that of the Co–Mn mixed oxide sample prepared by conventional resistance furnace heat treatment. Furthermore, a high specific energy of 31.5 W h kg–1 is obtained for the hybrid supercapacitor device assembled by N-doped Co–Mn mixed oxide and N-doped graphene. These remarkable electrochemical performances suggest that the UV radiation method can effectively enhance the electrochemical properties of transition metal oxide materials. This work also provides an alternative to conventional thermal treatment in preparing high-performance electrode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
character577发布了新的文献求助10
刚刚
1秒前
2秒前
czm33完成签到,获得积分10
2秒前
mdjinij发布了新的文献求助10
5秒前
yangshujuan发布了新的文献求助10
5秒前
别再熬夜完成签到,获得积分10
6秒前
怦怦应助lh采纳,获得10
7秒前
CodeCraft应助端庄的夏蓉采纳,获得10
7秒前
二行发布了新的文献求助10
8秒前
英俊的铭应助缓慢的半莲采纳,获得10
9秒前
别再熬夜发布了新的文献求助10
10秒前
天天快乐应助yangshujuan采纳,获得10
10秒前
12秒前
12秒前
mdjinij完成签到,获得积分10
13秒前
16秒前
西西发布了新的文献求助10
17秒前
19秒前
yangyajie发布了新的文献求助10
20秒前
潜放完成签到,获得积分10
21秒前
尹宁完成签到,获得积分10
23秒前
哈贝喵完成签到,获得积分10
23秒前
桑尼发布了新的文献求助10
23秒前
26秒前
酷波er应助tao采纳,获得10
26秒前
雨倾完成签到 ,获得积分10
29秒前
gjww应助阿狸你看什么采纳,获得10
30秒前
31秒前
tao完成签到,获得积分20
32秒前
32秒前
深情安青应助yan采纳,获得10
35秒前
沃利坎完成签到,获得积分10
36秒前
36秒前
番茄吐司完成签到,获得积分10
37秒前
37秒前
tao发布了新的文献求助10
38秒前
kiki发布了新的文献求助20
40秒前
小蘑菇应助susan采纳,获得20
41秒前
深情安青应助默默的乘风采纳,获得10
41秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2423018
求助须知:如何正确求助?哪些是违规求助? 2111900
关于积分的说明 5347373
捐赠科研通 1839366
什么是DOI,文献DOI怎么找? 915645
版权声明 561239
科研通“疑难数据库(出版商)”最低求助积分说明 489747