Automated reading passage generation with OpenAI's large language model

可读性 计算机科学 阅读(过程) 人工智能 自然语言处理 变压器 可扩展性 机器学习 程序设计语言 工程类 语言学 数据库 电气工程 哲学 电压
作者
Ummugul Bezirhan,Matthias von Davier
出处
期刊:Computers & Education: Artificial Intelligence [Elsevier BV]
卷期号:5: 100161-100161 被引量:28
标识
DOI:10.1016/j.caeai.2023.100161
摘要

The widespread usage of computer-based assessments and individualized learning platforms has increased demand for the rapid production of high-quality items. Automated item generation (AIG), the process of using item models to generate new items with the help of computer technology, was proposed to reduce reliance on human subject experts. While AIG has been used in test development, recent advances in machine learning algorithms offer the potential to enhance its efficiency further. This paper presents an innovative approach utilizing OpenAI's latest transformer-based language model, GPT-3, to generate reading passages. Existing reading passages were used in carefully engineered prompts to ensure the AI-generated text has similar content and structure to a fourth-grade reading passage. Multiple passages were generated for each prompt, and the final passage was selected based on Lexile score agreement with the original passage. To ensure accuracy, a human editor conducted a simple revision of the chosen passage, correcting any grammatical and factual errors. To evaluate the effectiveness of the AI-generated passages, human judges assessed their coherence and appropriateness for fourth-grade readers. The results indicated that GPT-3-produced passages closely resembled human-authored passages regarding coherence, appropriateness, and readability for the target audience. By combining GPT-3's capabilities with carefully designed prompts and human editing, this study demonstrates an efficient and effective method for generating reading passages. The findings highlight the potential of incorporating large language models into automated item generation, contributing to improved scalability and quality in educational assessment development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助球球采纳,获得10
1秒前
内向小熊猫完成签到,获得积分10
1秒前
tang完成签到,获得积分10
3秒前
Nicole发布了新的文献求助10
5秒前
Jermy发布了新的文献求助10
5秒前
深情安青应助Ray采纳,获得10
5秒前
Swilder完成签到 ,获得积分10
5秒前
英俊的铭应助秋秋采纳,获得10
6秒前
wmtttttt应助现实的白昼采纳,获得10
7秒前
ZAL发布了新的文献求助10
7秒前
fanny完成签到 ,获得积分10
8秒前
邱佩群完成签到 ,获得积分10
9秒前
13秒前
AUGKING27完成签到 ,获得积分10
13秒前
善学以致用应助ll采纳,获得10
13秒前
Jasper应助ll采纳,获得10
13秒前
英俊的铭应助ll采纳,获得10
14秒前
华仔应助ll采纳,获得10
14秒前
风清扬发布了新的文献求助10
14秒前
传奇3应助Meow采纳,获得10
14秒前
yar应助dt采纳,获得10
16秒前
16秒前
田様应助一百采纳,获得10
17秒前
迅速无敌发布了新的文献求助10
17秒前
杨Yang发布了新的文献求助10
18秒前
我是老大应助畅快菠萝采纳,获得10
18秒前
18秒前
小卡拉米完成签到,获得积分10
18秒前
19秒前
所所应助jiaweiluo采纳,获得10
19秒前
科研通AI2S应助星落枝头采纳,获得10
20秒前
Kyrie完成签到,获得积分10
21秒前
王涛发布了新的文献求助10
21秒前
大个应助Ploaris采纳,获得10
22秒前
22秒前
云峤发布了新的文献求助10
23秒前
老仙翁完成签到,获得积分10
24秒前
27秒前
27秒前
丘比特应助果果采纳,获得10
28秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Eco-Friendly Skin Solutions for Natural Cosmeceuticals 500
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4083563
求助须知:如何正确求助?哪些是违规求助? 3622840
关于积分的说明 11492863
捐赠科研通 3337531
什么是DOI,文献DOI怎么找? 1834841
邀请新用户注册赠送积分活动 903560
科研通“疑难数据库(出版商)”最低求助积分说明 821705