Lightweight channel-topology based adaptive graph convolutional network for skeleton-based action recognition

瓶颈 计算机科学 RGB颜色模型 图形 卷积(计算机科学) 块(置换群论) 模式识别(心理学) 拓扑(电路) 卷积神经网络 特征提取 频道(广播) 算法 人工智能 理论计算机科学 数学 人工神经网络 组合数学 嵌入式系统 几何学 计算机网络
作者
Kaixuan Wang,Hongmin Deng,Qilin Zhu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:560: 126830-126830 被引量:4
标识
DOI:10.1016/j.neucom.2023.126830
摘要

With the development of graph convolutional network (GCN) over the recent years, skeleton-based action recognition has achieved satisfactory results. However, some existing GCN-based models were complex because of lots of parameters in the models. Moreover, a large proportion of the existing GCN-based extraction methods for temporal feature could not effectively extract temporal features. To address this problem, a lightweight channel-topology based adaptive graph convolutional network (LC-AGCN), is proposed in this paper. And it includes three innovative and important blocks. To be specific, firstly, the channel-topology adaptive graph convolution (CAGC) block is proposed for spatial feature extraction (SConv), and a modified multi-scale convolution block is introduced to extract temporal features (TConv). Then, in order to decrease the quantity of parameters, the bottleneck structure is introduced to lighten the model and obtain the desired result. Finally, in order to embody the principle of ”few parameters with high evaluating accuracy”, a parameter λap is creatively proposed to reflect the performance of lightweight models, which means the ratio of precision to parameter quantity. Extensive experiments demonstrate that our method greatly reduces the quantity of parameters of the model while ensuring high enough accuracy. The superiority of LC-AGCN has been proved on two large-scale public datasets named NTU-RGB+D and NTU-RGB+D 120, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
小城发布了新的文献求助10
3秒前
3秒前
漫溢阳光发布了新的文献求助10
5秒前
hmf1995完成签到 ,获得积分10
5秒前
李嘉图发布了新的文献求助10
7秒前
崔略商完成签到,获得积分10
7秒前
8秒前
mervin完成签到,获得积分10
9秒前
在封我就急眼啦完成签到,获得积分10
9秒前
嗦嗦完成签到,获得积分10
9秒前
FashionBoy应助鱼626采纳,获得10
10秒前
aique完成签到,获得积分10
10秒前
yyds完成签到,获得积分20
10秒前
dagongren完成签到,获得积分10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得30
11秒前
852应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
11秒前
辉月完成签到,获得积分10
12秒前
研友_VZG7GZ应助chongya采纳,获得10
13秒前
zoie0809发布了新的文献求助10
14秒前
17秒前
18秒前
在水一方应助zoie0809采纳,获得10
19秒前
懵懂的采梦应助yyds采纳,获得10
20秒前
美满的弱发布了新的文献求助10
21秒前
钵钵鸡发布了新的文献求助10
23秒前
NexusExplorer应助happyou采纳,获得10
24秒前
22222发布了新的文献求助10
27秒前
30秒前
zlx完成签到 ,获得积分10
31秒前
科研通AI5应助lindahuang采纳,获得10
32秒前
美满的弱完成签到,获得积分20
33秒前
chali48完成签到 ,获得积分10
34秒前
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838427
求助须知:如何正确求助?哪些是违规求助? 3380725
关于积分的说明 10515658
捐赠科研通 3100360
什么是DOI,文献DOI怎么找? 1707439
邀请新用户注册赠送积分活动 821733
科研通“疑难数据库(出版商)”最低求助积分说明 772930