Derivation and External Validation of Machine Learning-Based Model for Detection of Pancreatic Cancer

医学 队列 入射(几何) 回顾性队列研究 胰腺癌 置信区间 内科学 癌症 光学 物理
作者
Wansu Chen,Yichen Zhou,Fagen Xie,Rebecca K. Butler,Christie Y. Jeon,Tiffany Luong,Botao Zhou,Yu‐Chen Lin,Eva Lustigova,Joseph R. Pisegna,Sungjin Kim,Bechien U. Wu
出处
期刊:The American Journal of Gastroenterology [American College of Gastroenterology]
卷期号:118 (1): 157-167 被引量:26
标识
DOI:10.14309/ajg.0000000000002050
摘要

INTRODUCTION: There is currently no widely accepted approach to screening for pancreatic cancer (PC). We aimed to develop and validate a risk prediction model for pancreatic ductal adenocarcinoma (PDAC), the most common form of PC, across 2 health systems using electronic health records. METHODS: This retrospective cohort study consisted of patients aged 50–84 years having at least 1 clinic-based visit over a 10-year study period at Kaiser Permanente Southern California (model training, internal validation) and the Veterans Affairs (VA, external testing). Random survival forests models were built to identify the most relevant predictors from >500 variables and to predict risk of PDAC within 18 months of cohort entry. RESULTS: The Kaiser Permanente Southern California cohort consisted of 1.8 million patients (mean age 61.6) with 1,792 PDAC cases. The 18-month incidence rate of PDAC was 0.77 (95% confidence interval 0.73–0.80)/1,000 person-years. The final main model contained age, abdominal pain, weight change, HbA1c, and alanine transaminase change (c-index: mean = 0.77, SD = 0.02; calibration test: P value 0.4, SD 0.3). The final early detection model comprised the same features as those selected by the main model except for abdominal pain (c-index: 0.77 and SD 0.4; calibration test: P value 0.3 and SD 0.3). The VA testing cohort consisted of 2.7 million patients (mean age 66.1) with an 18-month incidence rate of 1.27 (1.23–1.30)/1,000 person-years. The recalibrated main and early detection models based on VA testing data sets achieved a mean c-index of 0.71 (SD 0.002) and 0.68 (SD 0.003), respectively. DISCUSSION: Using widely available parameters in electronic health records, we developed and externally validated parsimonious machine learning-based models for detection of PC. These models may be suitable for real-time clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
sakyadamo发布了新的文献求助10
1秒前
清欢发布了新的文献求助10
1秒前
2秒前
2秒前
脑洞疼应助上山的吗喽采纳,获得30
3秒前
大模型应助好不了一丶采纳,获得10
3秒前
破绽完成签到,获得积分10
3秒前
Kirsten完成签到,获得积分10
4秒前
FashionBoy应助呆一起采纳,获得10
4秒前
5秒前
刻苦东蒽完成签到,获得积分10
5秒前
liu发布了新的文献求助10
5秒前
上官若男应助TG采纳,获得10
6秒前
FashionBoy应助wlnhyF采纳,获得10
7秒前
10711发布了新的文献求助10
8秒前
wuuw发布了新的文献求助20
9秒前
10秒前
呈歌完成签到 ,获得积分10
10秒前
11秒前
11秒前
酸酸发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
虚拟的纸鹤完成签到 ,获得积分10
12秒前
万能图书馆应助10711采纳,获得10
13秒前
思源应助guan采纳,获得10
13秒前
13秒前
13秒前
乐观的小鸡完成签到,获得积分10
13秒前
14秒前
慧慧完成签到 ,获得积分10
14秒前
Jasper应助liu采纳,获得10
15秒前
大方岩完成签到,获得积分10
16秒前
岳元满完成签到,获得积分20
16秒前
超超发布了新的文献求助10
16秒前
廖喜林发布了新的文献求助10
16秒前
vvA11完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901