SeparaFill: Two generators connected mural image restoration based on generative adversarial network with skip connect

壁画 人工智能 计算机科学 计算机视觉 图像复原 修补 直线(几何图形) 发电机(电路理论) 图像(数学) 图像处理 绘画 数学 艺术 视觉艺术 物理 功率(物理) 量子力学 几何学
作者
Chaohui Lv,Zilu Li,Yinghua Shen,Jinghua Li,Jin Zheng
出处
期刊:Heritage Science [Springer Nature]
卷期号:10 (1) 被引量:21
标识
DOI:10.1186/s40494-022-00771-w
摘要

Abstract Mural is an important component of culture and art of Dunhuang in China. Unfortunately, these murals had been ruined or are being ruined by some diseases such as cracking, hollowing, falling off, mildew, dirt, and so on. Existing image restoration algorithms have problems such as incomplete repair and disharmonious texture during large-area repair, so the effect of mural image disease area repair is poor. Due to lack of a standard mural datasets, Dunhuang mural datasets are created in the paper. Meanwhile, our network architecture SeparaFill is proposed which connects two generators based on U-Net. Based on the characteristics of the painting, the contour line pixel area of the mural image is innovatively separated from the content pixel area. Firstly, the contour restoration generator network with skip connect and hierarchical residual blocks is employed to repair contour lines. Then, the color mural image is repaired by the content completion network with guide of the repaired contour. Full resolution branches and generator branches of the U type are exploited in content completion generators. Convolution layers of different kernel sizes are fused to improve the reusability of the underlying features. Finally, global and local discriminant networks are applied to determine whether the repaired mural image is authentic in terms of both the modified and unmodified areas. The proposed SeparaFill shows good performance in restoring the line structure of the damaged mural images and retaining the contour information of the mural images. Compared with existing restoration algorithms in mural real damage repair experiment, our algorithm increases the peak signal-to-noise ratio (PSNR) by an average of 1.1–4.3 dB and the structural similarity (SSIM) values were slightly improved. Experimental results reveal the good performance of the proposed model, which can contribute to digital restorations of ancient murals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xunmi123完成签到,获得积分10
刚刚
1秒前
慕城完成签到,获得积分10
1秒前
V入门完成签到,获得积分10
2秒前
江野ooooooooooooo关注了科研通微信公众号
2秒前
顾矜应助北冥有鱼采纳,获得10
2秒前
王紫荆完成签到,获得积分10
3秒前
3秒前
夕阳红红完成签到,获得积分20
3秒前
善学以致用应助飞学book采纳,获得10
3秒前
suijinicheng完成签到,获得积分10
4秒前
4秒前
4秒前
忧郁含海发布了新的文献求助10
4秒前
5秒前
5秒前
撒哈拉的故事完成签到 ,获得积分10
5秒前
努力学习发布了新的文献求助10
5秒前
小咸鱼完成签到 ,获得积分10
6秒前
6秒前
Yezo完成签到,获得积分10
6秒前
刘晨旭发布了新的文献求助10
10秒前
梁大海完成签到,获得积分10
10秒前
秦pale发布了新的文献求助10
10秒前
11秒前
ding应助甜崽小肉丸采纳,获得10
11秒前
11秒前
是你完成签到,获得积分10
11秒前
卢珈馨发布了新的文献求助10
13秒前
14秒前
VQM232发布了新的文献求助20
14秒前
14秒前
15秒前
16秒前
16秒前
Yezo发布了新的文献求助30
17秒前
18秒前
今后应助zj采纳,获得10
18秒前
顺颂时祺发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879