SeparaFill: Two generators connected mural image restoration based on generative adversarial network with skip connect

壁画 人工智能 计算机科学 计算机视觉 图像复原 修补 直线(几何图形) 发电机(电路理论) 图像(数学) 图像处理 绘画 数学 艺术 视觉艺术 物理 功率(物理) 量子力学 几何学
作者
Chaohui Lv,Zilu Li,Yinghua Shen,Jinghua Li,Jin Zheng
出处
期刊:Heritage Science [Springer Science+Business Media]
卷期号:10 (1) 被引量:21
标识
DOI:10.1186/s40494-022-00771-w
摘要

Abstract Mural is an important component of culture and art of Dunhuang in China. Unfortunately, these murals had been ruined or are being ruined by some diseases such as cracking, hollowing, falling off, mildew, dirt, and so on. Existing image restoration algorithms have problems such as incomplete repair and disharmonious texture during large-area repair, so the effect of mural image disease area repair is poor. Due to lack of a standard mural datasets, Dunhuang mural datasets are created in the paper. Meanwhile, our network architecture SeparaFill is proposed which connects two generators based on U-Net. Based on the characteristics of the painting, the contour line pixel area of the mural image is innovatively separated from the content pixel area. Firstly, the contour restoration generator network with skip connect and hierarchical residual blocks is employed to repair contour lines. Then, the color mural image is repaired by the content completion network with guide of the repaired contour. Full resolution branches and generator branches of the U type are exploited in content completion generators. Convolution layers of different kernel sizes are fused to improve the reusability of the underlying features. Finally, global and local discriminant networks are applied to determine whether the repaired mural image is authentic in terms of both the modified and unmodified areas. The proposed SeparaFill shows good performance in restoring the line structure of the damaged mural images and retaining the contour information of the mural images. Compared with existing restoration algorithms in mural real damage repair experiment, our algorithm increases the peak signal-to-noise ratio (PSNR) by an average of 1.1–4.3 dB and the structural similarity (SSIM) values were slightly improved. Experimental results reveal the good performance of the proposed model, which can contribute to digital restorations of ancient murals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu完成签到,获得积分10
1秒前
YYk完成签到,获得积分20
1秒前
3秒前
3秒前
阿盛完成签到,获得积分10
4秒前
YYk发布了新的文献求助10
5秒前
6秒前
跳跃的太君完成签到,获得积分10
6秒前
8秒前
姜玲发布了新的文献求助10
8秒前
875728314完成签到,获得积分10
9秒前
9秒前
Bond完成签到,获得积分10
9秒前
深情安青应助胖飞飞采纳,获得10
10秒前
华仔应助安静采纳,获得10
10秒前
11秒前
无情山水发布了新的文献求助10
13秒前
14秒前
able完成签到 ,获得积分10
14秒前
茶茶完成签到,获得积分10
14秒前
外向的雁玉完成签到,获得积分10
15秒前
Bingbingbing发布了新的文献求助10
17秒前
18秒前
郑文涛完成签到,获得积分10
18秒前
姜玲完成签到,获得积分10
18秒前
18秒前
子非鱼完成签到 ,获得积分10
19秒前
Ahha完成签到 ,获得积分10
19秒前
小马甲应助Hxin Hsin采纳,获得10
20秒前
KKKK完成签到,获得积分10
20秒前
SciGPT应助FelixZhou采纳,获得10
20秒前
20秒前
遗憾交给时间完成签到,获得积分10
21秒前
23秒前
24秒前
哈哈嘻嘻完成签到,获得积分10
24秒前
潍澤应助WFLLL采纳,获得10
24秒前
JamesPei应助月明采纳,获得10
25秒前
26秒前
fawr完成签到 ,获得积分10
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845724
求助须知:如何正确求助?哪些是违规求助? 3387967
关于积分的说明 10551319
捐赠科研通 3108649
什么是DOI,文献DOI怎么找? 1712973
邀请新用户注册赠送积分活动 824550
科研通“疑难数据库(出版商)”最低求助积分说明 774891