A Spatiotemporal Constrained Machine Learning Method for OCO-2 Solar-Induced Chlorophyll Fluorescence (SIF) Reconstruction

遥感 计算机科学 算法 天文台 梯度升压 人工智能 数学 环境科学 气象学 物理 随机森林 地质学 天体物理学
作者
Michael K. Ng,Yuchen Wang,Xiaobin Guan,Wenli Huang,Jiajia Chen,Dekun Lin,Wenxia Gan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:9
标识
DOI:10.1109/tgrs.2022.3204885
摘要

Solar-induced chlorophyll fluorescence (SIF) is an intuitive and accurate way to measure vegetation photosynthesis. Orbiting Carbon Observatory-2 (OCO-2)-retrieved SIF has shown great potential in estimating terrestrial gross primary production (GPP), but the discontinuous spatial coverage limits its application. Although some researchers have reconstructed OCO-2 SIF data, few have considered the uneven spatial and temporal distribution of the swath-distributed data, which can induce large uncertainties. In this article, we propose a spatiotemporal constrained light gradient boosting machine model (ST-LGBM) to reconstruct a contiguous OCO-2 SIF product (eight days, 0.05°), considering the data distribution characteristics. Two spatial and temporal constraining factors are introduced to utilize the relationships between the swath-distributed OCO-2 samples, combining the geographical regularity and vegetation phenological characteristics. The results indicate that the ST-LGBM method can improve the reconstruction accuracy in the missing data areas ( $R^{2}= 0.79$ ), with an increment of 0.05 in $R^{2}$ . The declined accuracy of the traditional light gradient boosting machine (LightGBM) method in the missing data areas is well alleviated in our results. The real-data comparison with TROPOspheric Monitoring Instrument (TROPOMI) SIF observations also shows that the results of the ST-LGBM method can achieve a much better consistency, in both spatial distribution and temporal variation. The sensitivity analysis also shows that the ST-LGBM can support stable results when using various input combinations or different machine learning models. This approach represents an innovative way to reconstruct a more accurate globally continuous OCO-2 SIF product and also provides references to reconstruct other data with a similar distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿托伐他汀完成签到 ,获得积分10
刚刚
yuaner发布了新的文献求助10
1秒前
Aiden发布了新的文献求助10
1秒前
lqqq完成签到 ,获得积分10
5秒前
6秒前
科研通AI5应助LSY28采纳,获得10
7秒前
9秒前
12秒前
13秒前
13秒前
13秒前
LNN完成签到,获得积分10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
wlb1212123完成签到 ,获得积分10
15秒前
tt发布了新的文献求助10
17秒前
依亦然发布了新的文献求助10
17秒前
20秒前
yuyu完成签到,获得积分10
22秒前
打打应助危机的剑鬼采纳,获得10
22秒前
天天快乐应助元谷雪采纳,获得10
22秒前
伊布发布了新的文献求助10
25秒前
李嘉馨完成签到 ,获得积分10
26秒前
龍龖龘完成签到,获得积分10
27秒前
yank0452完成签到,获得积分20
27秒前
笨笨芯发布了新的文献求助10
27秒前
maox1aoxin应助Heaven采纳,获得30
28秒前
29秒前
小五完成签到,获得积分10
29秒前
龍龖龘发布了新的文献求助10
30秒前
包容的鞋垫完成签到,获得积分10
30秒前
李嘉馨关注了科研通微信公众号
31秒前
loosewires完成签到,获得积分10
33秒前
韩邹光完成签到,获得积分10
33秒前
34秒前
动漫大师发布了新的文献求助30
34秒前
35秒前
35秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805370
求助须知:如何正确求助?哪些是违规求助? 3350335
关于积分的说明 10348557
捐赠科研通 3066264
什么是DOI,文献DOI怎么找? 1683641
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243