Learning Feature Descriptors for Pre- and Intra-operative Point Cloud Matching for Laparoscopic Liver Registration

计算机科学 兰萨克 人工智能 点云 特征(语言学) 初始化 能见度 任务(项目管理) 匹配(统计) 点(几何) 图像配准 计算机视觉 模式识别(心理学) 直方图 图像(数学) 数学 统计 哲学 语言学 物理 管理 几何学 光学 经济 程序设计语言
作者
Zixin Yang,Richard Simon,Cristian A. Linte
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2211.03688
摘要

Purpose: In laparoscopic liver surgery (LLS), pre-operative information can be overlaid onto the intra-operative scene by registering a 3D pre-operative model to the intra-operative partial surface reconstructed from the laparoscopic video. To assist with this task, we explore the use of learning-based feature descriptors, which, to our best knowledge, have not been explored for use in laparoscopic liver registration. Furthermore, a dataset to train and evaluate the use of learning-based descriptors does not exist. Methods: We present the LiverMatch dataset consisting of 16 preoperative models and their simulated intra-operative 3D surfaces. We also propose the LiverMatch network designed for this task, which outputs per-point feature descriptors, visibility scores, and matched points. Results: We compare the proposed LiverMatch network with anetwork closest to LiverMatch, and a histogram-based 3D descriptor on the testing split of the LiverMatch dataset, which includes two unseen pre-operative models and 1400 intra-operative surfaces. Results suggest that our LiverMatch network can predict more accurate and dense matches than the other two methods and can be seamlessly integrated with a RANSAC-ICP-based registration algorithm to achieve an accurate initial alignment. Conclusion: The use of learning-based feature descriptors in LLR is promising, as it can help achieve an accurate initial rigid alignment, which, in turn, serves as an initialization for subsequent non-rigid registration. We will release the dataset and code upon acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI2S应助路冰采纳,获得10
4秒前
6秒前
VVV完成签到 ,获得积分10
7秒前
大模型应助Zxc采纳,获得10
9秒前
阿南发布了新的文献求助10
9秒前
12秒前
科研通AI5应助kk采纳,获得10
12秒前
13秒前
14秒前
Wesily完成签到,获得积分20
14秒前
14秒前
xia完成签到,获得积分10
14秒前
一只呆呆发布了新的文献求助20
17秒前
星辰大海应助ardejiang采纳,获得10
17秒前
18秒前
18秒前
Lucas应助科研通管家采纳,获得10
19秒前
孙燕应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
万能图书馆应助活力寒梅采纳,获得10
22秒前
Hello应助淳于穆采纳,获得10
23秒前
重要的谷菱完成签到,获得积分20
23秒前
24秒前
东方诩完成签到,获得积分10
25秒前
义气冰姬发布了新的文献求助10
25秒前
27秒前
28秒前
29秒前
_蝴蝶小姐完成签到,获得积分10
29秒前
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846691
求助须知:如何正确求助?哪些是违规求助? 3389224
关于积分的说明 10556417
捐赠科研通 3109635
什么是DOI,文献DOI怎么找? 1713842
邀请新用户注册赠送积分活动 824948
科研通“疑难数据库(出版商)”最低求助积分说明 775135