Multiple adulterants detection in turmeric powder using Vis-SWNIR hyperspectral imaging followed by multivariate curve resolution and classification techniques

高光谱成像 主成分分析 偏最小二乘回归 模式识别(心理学) 数学 多元统计 人工智能 线性判别分析 化学计量学 独立成分分析 色谱法 统计 化学 计算机科学
作者
Fatemeh Sadat Hashemi-Nasab,Shakiba Talebian,Hadi Parastar
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:185: 108203-108203 被引量:16
标识
DOI:10.1016/j.microc.2022.108203
摘要

In the present contribution, visible and short wavelengths of near infrared hyperspectral imaging (Vis-SWNIR-HSI) combined with different chemometric techniques is proposed as a novel technique for turmeric authentication and multiple adulterants (corn flour, rice flour, starch, wheat flour, and zedoary) detection. In this regard, twenty-three samples of turmeric were collected as whole rhizomes or powdered from seven countries and then their VIS-SWNIR hyperspectral images were obtained in 400–1000 nm using SPECIM IQ HSI device. Two multivariate resolution techniques of multivariate curve resolution-alternating least squares (MCR-ALS) and mean-field independent component analysis (MF-ICA) were used to extract pure spatial and spectral profiles of the components, and their results were compared by projecting their solutions in the area of feasible solutions (AFSs). Then, the distribution maps of turmeric component obtained using MCR-ALS and MF-ICA were used for authentication. Principal component analysis (PCA) was used to find the pattern of authentic samples using their distribution maps. Additionally, data-driven soft independent modeling of class analogy (DD-SIMCA) was employed to find boundary between authentic and adulterated turmeric samples. On this matter, good class modelling results with sensitivity of 95 % and specificity of 100 % were obtained. Finally, partial least squares-discriminant analysis (PLS-DA) was utilized for discrimination of the of adulternats and their in binary and multi-class classification modes. On this matter, PLS-DA accuracies were acceptable for binary and mixed samples which confirmed the validity of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
a1159545319完成签到,获得积分10
刚刚
nanfeng完成签到 ,获得积分10
1秒前
3秒前
梁嘉琦完成签到,获得积分10
3秒前
lh完成签到,获得积分10
4秒前
aleilei完成签到 ,获得积分10
5秒前
8秒前
Jimmy_King完成签到 ,获得积分10
10秒前
Joany发布了新的文献求助10
11秒前
奔跑的青霉素完成签到 ,获得积分10
11秒前
xlj730227完成签到 ,获得积分10
12秒前
火鸟发布了新的文献求助10
13秒前
CWC完成签到,获得积分10
13秒前
13秒前
laoxie301发布了新的文献求助10
20秒前
隐形的傲易完成签到 ,获得积分10
22秒前
余味应助LZQ采纳,获得10
23秒前
余味应助科研通管家采纳,获得10
24秒前
珂珂完成签到 ,获得积分10
24秒前
xmqaq完成签到,获得积分10
25秒前
25秒前
世间安得双全法完成签到,获得积分0
26秒前
starleo完成签到,获得积分10
27秒前
吴晓娟完成签到 ,获得积分10
28秒前
guojingjing完成签到 ,获得积分20
34秒前
大个应助cherrychou采纳,获得10
36秒前
39秒前
洁净的静芙完成签到 ,获得积分10
43秒前
44秒前
快乐学习每一天完成签到 ,获得积分10
45秒前
cherrychou发布了新的文献求助10
47秒前
Fang完成签到,获得积分10
48秒前
勤劳的忆寒应助固的曼采纳,获得80
50秒前
落落完成签到 ,获得积分10
52秒前
lilac完成签到,获得积分10
56秒前
南瓜完成签到,获得积分10
57秒前
777发布了新的文献求助10
1分钟前
迷途的羔羊完成签到 ,获得积分10
1分钟前
alixy完成签到,获得积分10
1分钟前
modernfamilyfan完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330072
关于积分的说明 10244317
捐赠科研通 3045457
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759544