Multiparty co-evolution of digital innovation ecosystems: from a perspective of data elements

作者
Min Fu,Donglin Chen,Ying Chen
出处
期刊:Kybernetes [Emerald (MCB UP)]
卷期号:: 1-29
标识
DOI:10.1108/k-09-2024-2505
摘要

Purpose The purpose of this paper is to analyse the multiparty co-evolution of digital innovation ecosystems from the perspective of data elements. Design/methodology/approach Based on the logistic model and the Lotka-Volterra model, this study constructs a multi-agent symbiotic evolution model for the digital innovation ecosystems and conducts a comprehensive study from theoretical, empirical, and simulation perspectives. Findings The research reveals that symbiotic units such as leading agents, complementary agents, and embedded agents drive the symbiotic evolution of the digital innovation ecosystem by forming different symbiotic patterns. The symbiotic coefficient, as a crucial parameter, plays a significant role in determining both the ultimate equilibrium state of the digital innovation ecosystem and the evolution direction of the three types of agents based on data elements. Leading agents serve as the development engine within the system. The mutually beneficial symbiotic model is identified as the optimal symbiotic model. Originality/value This study transcends traditional “single-core” and “dual-agent” paradigms by adopting a multi-agent participation perspective. Based on the differences in ownership and similarity of data elements possessed by the agents, it still defines the core agent as the leading agent while further segmenting stakeholders into complementary agents and embedded agents. Additionally, this paper constructs a symbiotic evolution model for the digital innovation ecosystem grounded in dynamic game theory, which uncovers the dynamic laws governing the evolution of symbiotic relationships. The model contributes to the establishment of a dynamic development system characterized by multi-agent participation, market-oriented operation, and collaborative governance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助hhhh采纳,获得10
1秒前
科研通AI2S应助QW采纳,获得10
5秒前
6秒前
等风来、云飞扬完成签到,获得积分10
7秒前
7秒前
41完成签到,获得积分10
8秒前
33发布了新的文献求助10
10秒前
邬佑鑫完成签到 ,获得积分10
11秒前
liu发布了新的文献求助10
11秒前
12秒前
语嘘嘘完成签到,获得积分10
13秒前
栗心完成签到,获得积分10
14秒前
志怪大人完成签到 ,获得积分10
14秒前
16秒前
温柔的中蓝完成签到,获得积分10
18秒前
xxy完成签到,获得积分10
20秒前
CodeCraft应助wdy337采纳,获得10
20秒前
21秒前
英姑应助33采纳,获得10
21秒前
CodeCraft应助ssx采纳,获得20
21秒前
21秒前
大个应助凌风香湾采纳,获得10
24秒前
FashionBoy应助啦啦啦采纳,获得10
24秒前
effort发布了新的文献求助10
24秒前
25秒前
25秒前
27秒前
小冉完成签到,获得积分10
28秒前
29秒前
May完成签到,获得积分20
30秒前
fixit发布了新的文献求助10
30秒前
MO发布了新的文献求助10
31秒前
32秒前
愉快的若云完成签到,获得积分10
33秒前
ssx发布了新的文献求助20
34秒前
hhhh完成签到,获得积分10
35秒前
chen发布了新的文献求助10
36秒前
37秒前
37秒前
量子星尘发布了新的文献求助10
38秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457595
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292551
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458671
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343