Multiscale-Information-Embedded Universal Toxicity Prediction Framework

作者
Lianlian Wu,Fanmeng Wang,Yixin Zhang,Ruijiang Li,Yanpeng Zhao,Hongteng Xu,Zhifeng Gao,Song He,Xiaochen Bo
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:59 (41): 21830-21847
标识
DOI:10.1021/acs.est.5c04614
摘要

Hazard identification and labeling of industrial chemicals and their released environmental pollutants are crucial for mitigating ecological and health risks. Comprehensive evaluation of multiple toxicity end points is essential to fully characterize chemical hazards. Existing deep-learning-based toxicity prediction models often exhibit poor generalizability, especially for rare toxicities with sparse data. Most studies fail to capture the three-dimensional (3D) spatial arrangement and stereochemical properties of chemicals, as well as the interrelated nature among end points, hindering accurate toxicity profiling. Here, we propose ToxScan, an SE(3)-equivariant multiscale model, as a universal toxicity prediction framework to address these issues. It incorporates 3D geometry information through a two-level molecular and atomic representation learning protocol. A parallel multiscale modeling and a multitask learning scheme are applied to learn universal toxicological characteristics. Results show that ToxScan achieves 7.8-37.6% improvements over state-of-the-art models for medium-/small-scale end points, demonstrates differentiation of structural analogues with contrasting toxicities, and maintains generalizability to environmental pollutants. Interpretability analysis at the atomic and molecular levels reveals identifiable atomic interaction patterns and potential structural alerts. Case studies reveal its capacity to detect subtle structural determinants while elucidating the mechanisms of pollutants. To facilitate user accessibility, we provide an intuitive web platform (https://funmg.dp.tech/Toxscan) for the rapid prediction of multiple toxicity end points of new compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clcl发布了新的文献求助10
刚刚
yznfly应助Yummerwei采纳,获得200
1秒前
ericzhouxx完成签到,获得积分10
1秒前
butterfly发布了新的文献求助10
1秒前
1秒前
轻松盼雁完成签到,获得积分10
2秒前
善良的函发布了新的文献求助10
2秒前
黄黄黄完成签到,获得积分10
3秒前
万能图书馆应助小文子采纳,获得10
4秒前
小花小宝和阿飞完成签到 ,获得积分10
4秒前
flora完成签到,获得积分10
5秒前
南烛完成签到 ,获得积分10
5秒前
6秒前
6秒前
huahua完成签到,获得积分10
6秒前
6秒前
奋斗的怀曼完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
LX完成签到,获得积分10
8秒前
asdfzxcv应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
577bree应助科研通管家采纳,获得50
8秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
天天发布了新的文献求助200
9秒前
七仔完成签到,获得积分10
9秒前
Lucas应助内向莫茗采纳,获得10
9秒前
淡定冬日完成签到,获得积分10
9秒前
破坏王发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652597
求助须知:如何正确求助?哪些是违规求助? 4787766
关于积分的说明 15060731
捐赠科研通 4811067
什么是DOI,文献DOI怎么找? 2573625
邀请新用户注册赠送积分活动 1529455
关于科研通互助平台的介绍 1488292