From subthalamic local field potentials to the selection of chronic deep brain stimulation contacts in Parkinson’s disease - A systematic review

脑深部刺激 丘脑底核 局部场电位 特征(语言学) 特征选择 检查表 人工智能 心理学 帕金森病 BETA(编程语言) 神经科学 计算机科学 机器学习 疾病 医学 认知心理学 病理 程序设计语言 哲学 语言学
作者
Marjolein Muller,Mark F.C. van Leeuwen,C.F.E. Hoffmann,Niels A. van der Gaag,Rodi Zutt,Saskia van der Gaag,Alfred C. Schouten,Maria Fiorella Contarino
出处
期刊:Brain Stimulation [Elsevier BV]
标识
DOI:10.1016/j.brs.2025.08.004
摘要

Programming deep brain stimulation (DBS) of the subthalamic nucleus for optimal symptom control in Parkinson's Disease (PD) requires time and trained personnel. Novel implantable neurostimulators allow local field potentials (LFP) recording, which could be used to identify the optimal (chronic) stimulation contact. However, literature is inconclusive on which LFP features and prediction techniques are most effective. To evaluate the performance of different LFP-based physiomarkers for predicting the optimal (chronic) stimulation contacts. A literature search was conducted across nine databases, resulting in 418 individual papers. Two independent reviewers screened the articles based on title, abstract, and full text. The quality of included studies was assessed using a modified Joanna Briggs Institute Critical Appraisal Checklist for Case Series. Results were categorised in four classes based on the predictive performance with respect to the a priori chance. Twenty-five studies were included. Single-feature beta-band predictions demonstrated positive performance scores in 94% of the outcomes. Predictions based on single non-beta-frequency features yielded positive scores in only 25% of the outcomes, with positive results mainly for high frequency oscillations. Multi-feature predictions (e.g. machine learning) achieved accuracy scores within the two highest performance classes more often than single beta-based predictions (100% versus 39%). Predicting the optimal stimulation contact based on LFP recordings is feasible and can improve DBS programming efficiency in PD. Single beta-band predictions show more promising results than non-beta-frequency features alone, but are outperformed by multi-feature predictions. Future research should further explore multi-feature predictions for optimal contact identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyf完成签到,获得积分10
1秒前
怕黑的凡灵完成签到 ,获得积分10
1秒前
1秒前
深情安青应助BINGBING采纳,获得10
2秒前
AYEFORBIDER完成签到,获得积分10
2秒前
2秒前
wyq完成签到,获得积分10
2秒前
2秒前
可靠诗筠完成签到 ,获得积分10
3秒前
Di发布了新的文献求助10
3秒前
3秒前
woxiangbiye完成签到,获得积分10
3秒前
4秒前
4秒前
nostalgia发布了新的文献求助10
4秒前
科目三应助11采纳,获得10
4秒前
CHEN02完成签到,获得积分10
5秒前
6秒前
wpf7848完成签到,获得积分10
6秒前
7秒前
Lee完成签到,获得积分10
7秒前
奋斗灵凡发布了新的文献求助30
7秒前
张聪发布了新的文献求助50
8秒前
wy18567337203发布了新的文献求助10
8秒前
8秒前
zzqaqzz完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
LX2xeK发布了新的文献求助10
10秒前
小蚊子发布了新的文献求助10
10秒前
10秒前
10秒前
烟花应助Blandwind采纳,获得10
11秒前
石榴汁的书完成签到,获得积分10
11秒前
enen完成签到,获得积分20
12秒前
QLLW完成签到,获得积分10
12秒前
可靠诗筠关注了科研通微信公众号
12秒前
量子星尘发布了新的文献求助10
13秒前
malo发布了新的文献求助10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4231006
求助须知:如何正确求助?哪些是违规求助? 3764576
关于积分的说明 11829061
捐赠科研通 3423640
什么是DOI,文献DOI怎么找? 1878743
邀请新用户注册赠送积分活动 931777
科研通“疑难数据库(出版商)”最低求助积分说明 839340