AI-Based System for Analysis of Electron Microscope Images in Glomerular Disease

肾小球基底膜 医学 肾脏疾病 病理 肾病 糖尿病肾病 人工智能 计算机科学 肾小球肾炎 内科学 糖尿病 内分泌学
作者
Pengcheng Ma,Jinbang Li,Zhengyu Zhang,Weihao Qiu,Danyi Li,Jing Wang,Bingbing Li,Shaojun Guo,Jin Zhang,Zhangsen Cen,Jian Geng,Xiangsheng Huang,Xiaolei Xue,Aihetaimu Aimaier,Huanjiao Liu,Minyi Liang,Hao Chen,Qifeng Jiang,Xiaoyan Su,Tianjun Guan
出处
期刊:JAMA network open [American Medical Association]
卷期号:8 (10): e2534985-e2534985 被引量:1
标识
DOI:10.1001/jamanetworkopen.2025.34985
摘要

Importance Kidney biopsy pathology via transmission electron microscopy (TEM) is essential for diagnosing glomerular diseases, offering critical information on glomerular basement membrane (GBM) thickness, foot process (FP) number, and electron-dense deposits (EDDs). These tasks are laborious and time-consuming. Objective To develop and validate an artificial intelligence (AI) diagnostic system, TEM image–based AI-assisted device (TEM-AID), that accurately segments and measures glomerular ultrastructures (including the GBM, FPs, and EDDs) and determines glomerular disease subtypes using TEM images. Design, Setting, and Participants This diagnostic study used a large, multicenter cohort including 160 727 TEM images from 31 670 patients with chronic kidney disease across 6 medical centers from January 2021 to December 2023. TEM-AID was trained and validated on 26 650 patients from 1 center and tested externally on 5020 patients (5 test sets) plus a human-AI test set (454 patients representing 7 glomerular disease subtypes). Data were analyzed from January to December 2024. Exposures TEM-AID integrates 4 modules. Segmentation combined YOLO-v8 detection, segment anything model, and human-in-the-loop refinement to segment GBMs, podocyte FPs, and EDDs. Measurement quantified GBM thickness, FP fusion degree, and EDD deposition sites. Classification used least absolute shrinkage and selection operator–selected deep learning and statistical features with a stacking classifier to diagnose 7 glomerular disease subtypes: immunoglobin A nephropathy, membranous nephropathy, lupus nephritis, diabetic nephropathy, minimal change disease, mesangial proliferative glomerulonephritis, and thin basement membrane nephropathy. Main Outcomes and Measures Outcomes of interest were segmentation performance (mean intersection-over-union [IOU], Dice coefficient), subtype classification accuracy, area under the receiver operating characteristic curve (AUC), and human-AI diagnostic concordance. Results A total of 31 670 patients (mean [SD] age, 43.2 [16.5] years; 17 372 [54.9%] male) contributed 160 727 TEM images for analysis. Segmentation achieved a mean (SD) IOU of 0.835 (0.062) and Dice of 0.874 (0.023). Subtype classification accuracy was 0.911 (95% CI, 0.904-0.918) in internal validation and 0.895 to 0.914 in external tests. Macro-AUC ranged from 0.972 to 0.989 across cohorts. In human-AI testing (454 patients), TEM-AID accuracy (0.886 (95% CI, 0.859-0.912]; AUC, 0.963 [95% CI, 0.937-0.989]) exceeded clinicians’ unaided performance. Clinicians’ accuracy improved by a mean (SD) of 11.7% (5.2%) when they used TEM-AID. Conclusions and Relevance In this multicenter diagnostic study, TEM-AID precisely quantified glomerular ultrastructures and determined glomerular disease subtypes from TEM images, significantly enhancing diagnostic efficiency and accuracy. This system provides quantitative evaluation tools to support clinical pathologists in diagnostic workflows, demonstrating robust multicenter performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何ry完成签到 ,获得积分10
刚刚
求助人员发布了新的文献求助10
1秒前
Moonchild完成签到 ,获得积分10
3秒前
独步出营完成签到 ,获得积分10
6秒前
If完成签到 ,获得积分10
8秒前
9秒前
屈煜彬完成签到 ,获得积分10
11秒前
英姑应助Wang采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
16秒前
jason668完成签到 ,获得积分10
19秒前
失眠的向日葵完成签到 ,获得积分10
20秒前
Imran完成签到,获得积分10
20秒前
细心健柏完成签到 ,获得积分10
26秒前
吉祥高趙完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
34秒前
液晶屏99完成签到,获得积分10
48秒前
kyt_vip完成签到,获得积分10
49秒前
laber完成签到,获得积分0
51秒前
zpmz完成签到 ,获得积分10
53秒前
谢陈完成签到 ,获得积分10
53秒前
神勇的天问完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
58秒前
木木杉完成签到 ,获得积分10
1分钟前
1分钟前
keke发布了新的文献求助10
1分钟前
luokm完成签到,获得积分10
1分钟前
qin完成签到 ,获得积分10
1分钟前
yoyo完成签到 ,获得积分10
1分钟前
sx666完成签到 ,获得积分10
1分钟前
望远Arena发布了新的文献求助30
1分钟前
GaCf完成签到,获得积分20
1分钟前
端庄洪纲完成签到 ,获得积分10
1分钟前
冷艳的又蓝完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
淼淼之锋完成签到 ,获得积分10
1分钟前
Akim应助qausyh采纳,获得10
1分钟前
sci_zt完成签到 ,获得积分10
1分钟前
矜持完成签到 ,获得积分10
1分钟前
纸条条完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612052
求助须知:如何正确求助?哪些是违规求助? 4696188
关于积分的说明 14890603
捐赠科研通 4731306
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473314