Transfer learning-based adaptive recursive neural network for short-term non-stationary building heating load prediction

均方误差 人工神经网络 循环神经网络 计算机科学 能源消耗 一般化 学习迁移 期限(时间) 平均绝对百分比误差 时间序列 近似误差 人工智能 算法 数学 机器学习 统计 工程类 数学分析 物理 量子力学 电气工程
作者
Yong Zhou,Xiang Li,Yanfeng Liu,Renshu Wei
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:76: 107271-107271 被引量:10
标识
DOI:10.1016/j.jobe.2023.107271
摘要

Building energy consumption is a non-stationary time series, and its distribution law changes over time. Traditional machine-learning models are prone to model shift, which leads to a reduction of their prediction accuracy when applied to building energy consumption forecasting. Therefore, in this paper, an adaptive neural network framework is proposed for non-stationary building energy consumption prediction based on transfer learning, in which the training datasets are divided into the most dissimilar periods, and based on the transfer learning mechanism, the different periods of data are learned to obtain the minimum overall loss to improve the model generalization. Taking LSTM and GRU models as examples, adaptive long short-term memory (adaLSTM) and adaptive gated recurrent unit (adaGRU) building energy consumption prediction models are established. The models were trained and verified using heating load data from Xi'an, China. The results show that compared with LSTM model, the coefficient of determination, root mean square error, the coefficient of variation of the root mean squared error and mean absolute error of the adaLSTM model were improved by 0.61%, 37.78%, 38.05% and 30.69%, respectively, and the over-fitting degree was reduced by 227.7%. Compared with the traditional GRU model, the corresponding evaluation indexes of adaGRU were improved by 2.50%, 70.58%, 70.64% and 68.83%, respectively, and the over-fitting degree was improved by 505.7% points. The adaptive recurrent neural network framework proposed in this paper is a generalized approach which can be applied to other non-stationary time series prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Besty发布了新的文献求助10
1秒前
1秒前
yazhang完成签到 ,获得积分10
2秒前
2秒前
懦弱的龙猫完成签到 ,获得积分10
2秒前
852应助kathy采纳,获得10
3秒前
大个应助kathy采纳,获得10
3秒前
赘婿应助QQ采纳,获得10
3秒前
老实寒梦完成签到,获得积分10
4秒前
wshwx发布了新的文献求助100
4秒前
等一个晴天完成签到,获得积分10
5秒前
8秒前
共享精神应助沉默白桃采纳,获得10
9秒前
善学以致用应助yyyyyyy采纳,获得10
10秒前
11秒前
11秒前
李健应助hkf采纳,获得10
12秒前
13秒前
surivoyage完成签到,获得积分10
14秒前
的的的墨完成签到,获得积分20
14秒前
123完成签到,获得积分20
14秒前
Q1n发布了新的文献求助10
14秒前
大鱼完成签到,获得积分20
15秒前
czz完成签到 ,获得积分10
16秒前
17秒前
吐司咩咩完成签到,获得积分10
17秒前
堀江真夏完成签到 ,获得积分10
17秒前
18秒前
Shamray应助丁一采纳,获得20
18秒前
量子星尘发布了新的文献求助10
19秒前
scloar发布了新的文献求助10
19秒前
20秒前
123完成签到,获得积分10
20秒前
20秒前
Jayce完成签到,获得积分10
20秒前
十一完成签到,获得积分10
20秒前
qqqyoyoyo发布了新的文献求助10
21秒前
916应助xuanzhezhou采纳,获得10
21秒前
难过谷丝发布了新的文献求助30
22秒前
吐司咩咩发布了新的文献求助10
22秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871187
求助须知:如何正确求助?哪些是违规求助? 3413299
关于积分的说明 10683969
捐赠科研通 3137766
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834643
科研通“疑难数据库(出版商)”最低求助积分说明 781250