Transfer learning-based adaptive recursive neural network for short-term non-stationary building heating load prediction

均方误差 人工神经网络 循环神经网络 计算机科学 能源消耗 一般化 学习迁移 期限(时间) 平均绝对百分比误差 时间序列 近似误差 人工智能 算法 数学 机器学习 统计 工程类 数学分析 物理 量子力学 电气工程
作者
Yong Zhou,Xiang Li,Yanfeng Liu,Renshu Wei
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:76: 107271-107271 被引量:10
标识
DOI:10.1016/j.jobe.2023.107271
摘要

Building energy consumption is a non-stationary time series, and its distribution law changes over time. Traditional machine-learning models are prone to model shift, which leads to a reduction of their prediction accuracy when applied to building energy consumption forecasting. Therefore, in this paper, an adaptive neural network framework is proposed for non-stationary building energy consumption prediction based on transfer learning, in which the training datasets are divided into the most dissimilar periods, and based on the transfer learning mechanism, the different periods of data are learned to obtain the minimum overall loss to improve the model generalization. Taking LSTM and GRU models as examples, adaptive long short-term memory (adaLSTM) and adaptive gated recurrent unit (adaGRU) building energy consumption prediction models are established. The models were trained and verified using heating load data from Xi'an, China. The results show that compared with LSTM model, the coefficient of determination, root mean square error, the coefficient of variation of the root mean squared error and mean absolute error of the adaLSTM model were improved by 0.61%, 37.78%, 38.05% and 30.69%, respectively, and the over-fitting degree was reduced by 227.7%. Compared with the traditional GRU model, the corresponding evaluation indexes of adaGRU were improved by 2.50%, 70.58%, 70.64% and 68.83%, respectively, and the over-fitting degree was improved by 505.7% points. The adaptive recurrent neural network framework proposed in this paper is a generalized approach which can be applied to other non-stationary time series prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文冷亦完成签到 ,获得积分10
刚刚
李爱国应助无心的平蝶采纳,获得30
刚刚
1秒前
3秒前
4秒前
充电宝应助郭曦铖采纳,获得10
4秒前
5秒前
5秒前
芝麻糊完成签到,获得积分20
5秒前
慕青应助堇笙vv采纳,获得10
6秒前
6秒前
6秒前
鞥枊完成签到,获得积分10
7秒前
9秒前
9秒前
科研通AI2S应助willa采纳,获得10
9秒前
Qiaoguliang发布了新的文献求助10
10秒前
曦02发布了新的文献求助10
11秒前
11秒前
12秒前
白象发布了新的文献求助10
12秒前
WWW7发布了新的文献求助10
12秒前
12秒前
12秒前
堇笙vv完成签到,获得积分10
13秒前
鲤鱼完成签到,获得积分10
13秒前
多情的灵安完成签到,获得积分10
13秒前
传奇3应助壮观雁开采纳,获得10
13秒前
鬼见愁发布了新的文献求助10
14秒前
打打应助小欣采纳,获得10
15秒前
欧阳白凝发布了新的文献求助10
16秒前
16秒前
耶稣与梦应助JPH1990采纳,获得30
16秒前
中恐完成签到,获得积分0
16秒前
17秒前
向响响发布了新的文献求助10
18秒前
momucy完成签到,获得积分10
18秒前
李健应助zxc采纳,获得10
19秒前
19秒前
Jasper应助白象采纳,获得10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4165681
求助须知:如何正确求助?哪些是违规求助? 3701339
关于积分的说明 11685552
捐赠科研通 3390050
什么是DOI,文献DOI怎么找? 1859209
邀请新用户注册赠送积分活动 919574
科研通“疑难数据库(出版商)”最低求助积分说明 832193