Transfer learning-based adaptive recursive neural network for short-term non-stationary building heating load prediction

均方误差 人工神经网络 循环神经网络 计算机科学 能源消耗 一般化 学习迁移 期限(时间) 平均绝对百分比误差 时间序列 近似误差 人工智能 算法 数学 机器学习 统计 工程类 数学分析 物理 量子力学 电气工程
作者
Yong Zhou,Xiang Li,Yanfeng Liu,Renshu Wei
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:76: 107271-107271 被引量:10
标识
DOI:10.1016/j.jobe.2023.107271
摘要

Building energy consumption is a non-stationary time series, and its distribution law changes over time. Traditional machine-learning models are prone to model shift, which leads to a reduction of their prediction accuracy when applied to building energy consumption forecasting. Therefore, in this paper, an adaptive neural network framework is proposed for non-stationary building energy consumption prediction based on transfer learning, in which the training datasets are divided into the most dissimilar periods, and based on the transfer learning mechanism, the different periods of data are learned to obtain the minimum overall loss to improve the model generalization. Taking LSTM and GRU models as examples, adaptive long short-term memory (adaLSTM) and adaptive gated recurrent unit (adaGRU) building energy consumption prediction models are established. The models were trained and verified using heating load data from Xi'an, China. The results show that compared with LSTM model, the coefficient of determination, root mean square error, the coefficient of variation of the root mean squared error and mean absolute error of the adaLSTM model were improved by 0.61%, 37.78%, 38.05% and 30.69%, respectively, and the over-fitting degree was reduced by 227.7%. Compared with the traditional GRU model, the corresponding evaluation indexes of adaGRU were improved by 2.50%, 70.58%, 70.64% and 68.83%, respectively, and the over-fitting degree was improved by 505.7% points. The adaptive recurrent neural network framework proposed in this paper is a generalized approach which can be applied to other non-stationary time series prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄黄完成签到,获得积分10
1秒前
科研通AI2S应助GWS采纳,获得10
1秒前
PhD发布了新的文献求助10
1秒前
1秒前
2秒前
indium发布了新的文献求助10
3秒前
搜集达人应助vv采纳,获得10
3秒前
3秒前
张紫茹发布了新的文献求助10
3秒前
Koalas应助夏至未至采纳,获得10
4秒前
科研通AI2S应助小绵羊采纳,获得10
5秒前
小Z应助小绵羊采纳,获得10
5秒前
柳柳完成签到,获得积分10
5秒前
6秒前
6秒前
panxue发布了新的文献求助10
6秒前
emoji发布了新的文献求助10
7秒前
怕黑鑫发布了新的文献求助30
7秒前
浮游应助111采纳,获得10
8秒前
10秒前
zhang完成签到,获得积分10
10秒前
荧惑发布了新的文献求助10
11秒前
诗谙发布了新的文献求助10
11秒前
11秒前
zzl7337完成签到,获得积分10
12秒前
PhD完成签到,获得积分10
12秒前
科研通AI6应助自帮助采纳,获得10
13秒前
sleepingfish应助赵小坤堃采纳,获得20
13秒前
necessaryman完成签到,获得积分10
13秒前
浮游应助jack采纳,获得10
14秒前
吴洲龙完成签到,获得积分10
14秒前
15秒前
高兴绿柳发布了新的文献求助10
16秒前
18秒前
李健应助诗谙采纳,获得10
19秒前
19秒前
麞欎发布了新的文献求助10
19秒前
张紫茹完成签到,获得积分10
19秒前
orixero应助kpzwov采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5038231
求助须知:如何正确求助?哪些是违规求助? 4270422
关于积分的说明 13314612
捐赠科研通 4081869
什么是DOI,文献DOI怎么找? 2233189
邀请新用户注册赠送积分活动 1240944
关于科研通互助平台的介绍 1167130