Electroplasticity in the Al0.6CoCrFeNiMn high entropy alloy subjected to electrically-assisted uniaxial tension

材料科学 合金 成形性 位错 电流密度 高熵合金 延伸率 流动应力 可塑性 复合材料 极限抗拉强度 物理 量子力学
作者
Yang Zhi-qin,Jianxing Bao,Chaogang Ding,Sujung Son,Zhiliang Ning,Jie Xu,Debin Shan,Bin Guo,Hyoung Seop Kim
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
卷期号:148: 209-221 被引量:28
标识
DOI:10.1016/j.jmst.2022.11.031
摘要

Electrically assisted deformation (EAD) was adopted in this work to overcome the shortcomings such as poor formability and easy cracking in the processing of dual-phase the Al0.6CoCrFeNiMn high entropy alloy (HEA) at room temperature. Electroplasticity of the Al0.6CoCrFeNiMn HEA was studied systematically using electrically assisted uniaxial tension. The results showed that pulse current caused the temperature gradient along the tensile direction and the temperatures of the samples increased with the current density. The flow stress decreased, and the elongation increased with increasing current density during the EAD. When the current density was 30 A mm–2, the total elongation of the samples could be increased by 50% compared to that with no pulse. Pulse current can reduce local stress concentration and postpone microcracks initiation in the body-centered cubic (BCC) phases, and hence can effectively inhibit cracks and ruptures. The dislocation tangles were opened by pulse current, and the dislocation recovery was enhanced at a high current density. Compared with dilute solid solution alloys, the lattice distortion effect, the high fraction of the BCC phases, and the dislocations in HEAs can lead to the enhancement of the local Joule heating, which accelerated dislocation slip and dislocation annihilation. This study confirms that EAD can effectively improve the formability of HEAs and provides theoretical guidance and an experimental basis for forming HEAs components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
入戏太深发布了新的文献求助10
1秒前
jerrymomoko应助猕猴桃猴采纳,获得20
1秒前
乐乐应助acc采纳,获得10
2秒前
10秒前
10秒前
科研通AI5应助我爱查文献采纳,获得20
11秒前
科研通AI2S应助江氏巨颏虎采纳,获得10
14秒前
阿依夏克热木江完成签到,获得积分10
14秒前
沉甸甸发布了新的文献求助10
14秒前
acc发布了新的文献求助10
15秒前
16秒前
18秒前
20秒前
高山流水应助18616采纳,获得10
21秒前
要减肥世开关注了科研通微信公众号
22秒前
李健应助沉甸甸采纳,获得10
24秒前
谭歆柔发布了新的文献求助10
24秒前
24秒前
ruby完成签到,获得积分10
25秒前
ruby发布了新的文献求助10
29秒前
润物无声完成签到,获得积分10
33秒前
Leo_Sun完成签到,获得积分10
36秒前
火花发布了新的文献求助10
37秒前
SciGPT应助要减肥世开采纳,获得30
44秒前
kajikaji完成签到,获得积分10
46秒前
46秒前
Ulrica完成签到,获得积分10
53秒前
空白完成签到,获得积分10
54秒前
个性襄完成签到,获得积分10
57秒前
典雅长颈鹿完成签到,获得积分10
59秒前
59秒前
March完成签到,获得积分10
1分钟前
1分钟前
1分钟前
顾家老攻完成签到,获得积分10
1分钟前
1分钟前
iiiid完成签到,获得积分10
1分钟前
1分钟前
共行完成签到 ,获得积分10
1分钟前
lily完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776514
求助须知:如何正确求助?哪些是违规求助? 3321990
关于积分的说明 10208390
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872