An NIR-Driven Upconversion/C3N4/CoP Photocatalyst for Efficient Hydrogen Production by Inhibiting Electron–Hole Pair Recombination for Alzheimer’s Disease Therapy

光催化 制氢 材料科学 拉曼光谱 光化学 纳米技术 电子转移 化学 催化作用 有机化学 光学 物理
作者
Kezhen Ge,Zheng Li,Ali Wang,Zetai Bai,Xing Zhang,Xin Zheng,Zhao Liu,Fenglei Gao
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (3): 2222-2234 被引量:46
标识
DOI:10.1021/acsnano.2c08499
摘要

Redox imbalance and abnormal amyloid protein (Aβ) buildup are key factors in the etiology of Alzheimer's disease (AD). As an antioxidant, the hydrogen molecule (H2) has the potential to cure AD by specifically scavenging highly harmful reactive oxygen species (ROS) such as •OH. However, due to the low solubility of H2 (1.6 ppm), the traditional H2 administration pathway cannot easily achieve long-term and effective accumulation of H2 in the foci. Therefore, how to achieve the continuous release of H2in situ is the key to improve the therapeutic effect on AD. As a corollary, we designed a rare earth ion doped g-C3N4 upconversion photocatalyst, which can respond to NIR and realize the continuous production of H2 by photocatalytic decomposition of H2O in biological tissue, which avoids the problem of the poor penetration of visible light. The introduction of CoP cocatalyst accelerates the separation and transfer of photogenerated electrons in g-C3N4, thus improving the photocatalytic activity of hydrogen evolution reaction. The morphology of the composite photocatalyst was shown by transmission electron microscopy, and the crystal structure was studied by X-ray diffractometry and Raman analysis. In addition, the ability of g-C3N4 to chelate metal ions and the photothermal properties of CoP can inhibit Aβ and reduce the deposition of Aβ in the brain. Efficient in situ hydrogen production therapy combined with multitarget synergism solves the problem of a poor therapeutic effect of a single target. In vivo studies have shown that UCNP@CoP@g-C3N4 can reduce Aβ deposition, improve memory impairment, and reduce neuroinflammation in AD mice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助xima采纳,获得10
1秒前
MX120240328完成签到,获得积分10
4秒前
刘敏完成签到 ,获得积分10
5秒前
5秒前
dawn完成签到,获得积分10
5秒前
5秒前
5秒前
Gentle发布了新的文献求助10
7秒前
kai完成签到,获得积分10
8秒前
丘比特应助丫丫采纳,获得10
8秒前
fffff发布了新的文献求助10
8秒前
Ado发布了新的文献求助100
8秒前
zjfmmu完成签到,获得积分10
9秒前
imzmy完成签到,获得积分10
9秒前
LLL20240701发布了新的文献求助10
9秒前
小马甲应助Candy采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
alan发布了新的文献求助10
10秒前
13秒前
一一完成签到,获得积分10
13秒前
NexusExplorer应助马晓玲采纳,获得10
15秒前
BINGOFAN发布了新的文献求助10
15秒前
天天快乐应助骤雨红尘采纳,获得10
16秒前
16秒前
NAMI关注了科研通微信公众号
17秒前
打打应助Goes采纳,获得10
17秒前
17秒前
18秒前
18秒前
19秒前
alan完成签到,获得积分10
19秒前
有机发布了新的文献求助10
19秒前
1234完成签到 ,获得积分10
21秒前
啦啦啦啦完成签到,获得积分10
21秒前
Jilin发布了新的文献求助10
21秒前
丫丫发布了新的文献求助10
22秒前
科研通AI6应助xxw采纳,获得30
23秒前
心灵完成签到 ,获得积分10
24秒前
guyuefanxing发布了新的文献求助10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4231521
求助须知:如何正确求助?哪些是违规求助? 3764946
关于积分的说明 11830307
捐赠科研通 3423909
什么是DOI,文献DOI怎么找? 1878981
邀请新用户注册赠送积分活动 931891
科研通“疑难数据库(出版商)”最低求助积分说明 839431