An NIR-Driven Upconversion/C3N4/CoP Photocatalyst for Efficient Hydrogen Production by Inhibiting Electron–Hole Pair Recombination for Alzheimer’s Disease Therapy

光催化 制氢 材料科学 拉曼光谱 光化学 纳米技术 电子转移 化学 催化作用 有机化学 光学 物理
作者
Kezhen Ge,Zheng Li,Ali Wang,Zetai Bai,Xing Zhang,Xin Zheng,Zhao Liu,Fenglei Gao
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (3): 2222-2234 被引量:62
标识
DOI:10.1021/acsnano.2c08499
摘要

Redox imbalance and abnormal amyloid protein (Aβ) buildup are key factors in the etiology of Alzheimer's disease (AD). As an antioxidant, the hydrogen molecule (H2) has the potential to cure AD by specifically scavenging highly harmful reactive oxygen species (ROS) such as OH. However, due to the low solubility of H2 (1.6 ppm), the traditional H2 administration pathway cannot easily achieve long-term and effective accumulation of H2 in the foci. Therefore, how to achieve the continuous release of H2 in situ is the key to improve the therapeutic effect on AD. As a corollary, we designed a rare earth ion doped g-C3N4 upconversion photocatalyst, which can respond to NIR and realize the continuous production of H2 by photocatalytic decomposition of H2O in biological tissue, which avoids the problem of the poor penetration of visible light. The introduction of CoP cocatalyst accelerates the separation and transfer of photogenerated electrons in g-C3N4, thus improving the photocatalytic activity of hydrogen evolution reaction. The morphology of the composite photocatalyst was shown by transmission electron microscopy, and the crystal structure was studied by X-ray diffractometry and Raman analysis. In addition, the ability of g-C3N4 to chelate metal ions and the photothermal properties of CoP can inhibit Aβ and reduce the deposition of Aβ in the brain. Efficient in situ hydrogen production therapy combined with multitarget synergism solves the problem of a poor therapeutic effect of a single target. In vivo studies have shown that UCNP@CoP@g-C3N4 can reduce Aβ deposition, improve memory impairment, and reduce neuroinflammation in AD mice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
宋宋syi完成签到 ,获得积分10
刚刚
我是一块小饼干完成签到 ,获得积分10
刚刚
文文完成签到 ,获得积分10
1秒前
莉莉芙完成签到 ,获得积分10
1秒前
JamesPei应助lemon采纳,获得10
2秒前
xingper发布了新的文献求助10
3秒前
snowpie完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
这文献怎么找不齐完成签到,获得积分10
6秒前
yuan1226完成签到 ,获得积分10
7秒前
充电宝应助小牛马阿欢采纳,获得10
7秒前
刻苦的糖豆完成签到,获得积分10
7秒前
科研通AI6应助Yi采纳,获得10
8秒前
8秒前
眠妃完成签到 ,获得积分10
8秒前
李健应助现代傲芙采纳,获得30
9秒前
NexusExplorer应助ZZZZZZ采纳,获得10
9秒前
11秒前
nanjiab发布了新的文献求助10
12秒前
嘿嘿发布了新的文献求助10
12秒前
不困发布了新的文献求助10
13秒前
14秒前
爆米花应助中恐采纳,获得10
15秒前
lnyever完成签到,获得积分10
16秒前
Hello应助一两二两三两斤采纳,获得10
17秒前
18秒前
yukino发布了新的文献求助10
19秒前
19秒前
orixero应助FFF采纳,获得10
19秒前
19秒前
21秒前
23秒前
激情的不弱完成签到,获得积分10
23秒前
rmrb完成签到,获得积分10
24秒前
充电宝应助rgdfgf采纳,获得10
25秒前
wxy完成签到,获得积分10
25秒前
lulu发布了新的文献求助10
25秒前
26秒前
26秒前
哈哈哈完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494816
求助须知:如何正确求助?哪些是违规求助? 4592556
关于积分的说明 14437818
捐赠科研通 4525439
什么是DOI,文献DOI怎么找? 2479434
邀请新用户注册赠送积分活动 1464210
关于科研通互助平台的介绍 1437185