Scikit-ANFIS: A Scikit-Learn Compatible Python Implementation for Adaptive Neuro-Fuzzy Inference System

自适应神经模糊推理系统 Python(编程语言) 计算机科学 神经模糊 计算智能 推理系统 人工智能 模糊推理系统 推论 模糊逻辑 模糊控制系统 程序设计语言
作者
Dongsong Zhang,Tianhua Chen
出处
期刊:International Journal of Fuzzy Systems [Springer Science+Business Media]
卷期号:26 (6): 2039-2057 被引量:1
标识
DOI:10.1007/s40815-024-01697-0
摘要

Abstract The Adaptative neuro-fuzzy inference system (ANFIS) has shown great potential in processing practical data from control, prediction, and inference applications, reflecting advantages in both high performance and system interpretability as a result of the hybridization of neural networks and fuzzy systems. Matlab has been a prevalent platform that allows to utilize and deploy ANFIS conveniently. On the other hand, due to the recent popularity of machine learning and deep learning, which are predominantly Python-based, implementations of ANFIS in Python have attracted recent attention. Although there are a few Python-based ANFIS implementations, none of them are directly compatible with scikit-learn, one of the most frequently used libraries in machine learning. As such, this paper proposes Scikit-ANFIS, a novel scikit-learn compatible Python implementation for ANFIS by adopting a uniform format such as fit () and predict () functions to provide the same interface as scikit-learn. Our Scikit-ANFIS is designed in a user-friendly way to not only manually generate a general fuzzy system and train it with the ANFIS method but also to automatically create an ANFIS fuzzy system. We also provide four kinds of representative cases to show that Scikit-ANFIS represents a valuable addition to the scikit-learn compatible Python software that supports ANFIS fuzzy reasoning. Experimental results on four datasets show that our Scikit-ANFIS outperforms recent Python-based implementations while achieving parallel performance to ANFIS in Matlab, a standard implementation officially realized by Matlab, which indicates the performance advantages and application convenience of our software.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
桐桐应助莫若舞采纳,获得10
2秒前
3秒前
冷酷小松鼠完成签到,获得积分20
4秒前
4秒前
迅速的八宝粥完成签到,获得积分20
6秒前
虚心烨磊关注了科研通微信公众号
6秒前
孙燕应助hz采纳,获得30
6秒前
科研通AI5应助hz采纳,获得10
7秒前
背书强完成签到 ,获得积分10
7秒前
zyq发布了新的文献求助10
8秒前
9秒前
共享精神应助shilong.yang采纳,获得100
9秒前
科研通AI2S应助shilong.yang采纳,获得10
9秒前
小蘑菇应助shilong.yang采纳,获得10
9秒前
orixero应助shilong.yang采纳,获得10
10秒前
10秒前
所所应助shilong.yang采纳,获得10
10秒前
华仔应助shilong.yang采纳,获得10
10秒前
ding应助隐形的笑白采纳,获得10
11秒前
鑫xx完成签到 ,获得积分10
11秒前
11秒前
12秒前
脑洞疼应助SUPERH0T采纳,获得10
13秒前
莫若舞发布了新的文献求助10
15秒前
田様应助xxhui采纳,获得10
15秒前
珍珠奶茶发布了新的文献求助10
16秒前
balancesy完成签到,获得积分10
16秒前
Liberation完成签到,获得积分10
16秒前
17秒前
YX完成签到,获得积分20
20秒前
廿廿廿完成签到,获得积分10
22秒前
23秒前
tsjxs完成签到,获得积分10
24秒前
25秒前
25秒前
Julia发布了新的文献求助10
25秒前
27秒前
故意的寒安完成签到,获得积分10
27秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Methods and Applications of Geochronology 200
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831787
求助须知:如何正确求助?哪些是违规求助? 3373901
关于积分的说明 10482367
捐赠科研通 3093826
什么是DOI,文献DOI怎么找? 1703081
邀请新用户注册赠送积分活动 819287
科研通“疑难数据库(出版商)”最低求助积分说明 771399