RVDR-YOLOv8: A Weed Target Detection Model Based on Improved YOLOv8

计算 残余物 计算机科学 骨干网 计算复杂性理论 膨胀(度量空间) 卷积(计算机科学) 机器人 网络模型 算法 人工智能 数学 人工神经网络 计算机网络 组合数学
作者
Yuanming Ding,Chen Jiang,Lin Song,Fei Liu,Yunrui Tao
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (11): 2182-2182 被引量:8
标识
DOI:10.3390/electronics13112182
摘要

Currently, weed control robots that can accurately identify weeds and carry out removal work are gradually replacing traditional chemical weed control techniques. However, the computational and storage resources of the core processing equipment of weeding robots are limited. Aiming at the current problems of high computation and the high number of model parameters in weeding robots, this paper proposes a lightweight weed target detection model based on the improved YOLOv8 (You Only Look Once Version 8), called RVDR-YOLOv8 (Reversible Column Dilation-wise Residual). First, the backbone network is reconstructed based on RevCol (Reversible Column Networks). The unique reversible columnar structure of the new backbone network not only reduces the computational volume but also improves the model generalisation ability. Second, the C2fDWR module is designed using Dilation-wise Residual and integrated with the reconstructed backbone network, which improves the adaptive ability of the new backbone network RVDR and enhances the model’s recognition accuracy for occluded targets. Again, GSConv is introduced at the neck end instead of traditional convolution to reduce the complexity of computation and network structure while ensuring the model recognition accuracy. Finally, InnerMPDIoU is designed by combining MPDIoU with InnerIoU to improve the prediction accuracy of the model. The experimental results show that the computational complexity of the new model is reduced by 35.8%, the number of parameters is reduced by 35.4% and the model size is reduced by 30.2%, while the mAP50 and mAP50-95 values are improved by 1.7% and 1.1%, respectively, compared to YOLOv8. The overall performance of the new model is improved compared to models such as Faster R-CNN, SSD and RetinaNet. The new model proposed in this paper can achieve the accurate identification of weeds in farmland under the condition of limited hardware resources, which provides theoretical and technical support for the effective control of weeds in farmland.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞舞的青鱼完成签到,获得积分10
3秒前
培a发布了新的文献求助10
4秒前
完美世界应助木木采纳,获得10
4秒前
能干季节发布了新的文献求助10
4秒前
4秒前
树树完成签到,获得积分10
5秒前
唯美完成签到,获得积分10
5秒前
啊哭发布了新的文献求助10
5秒前
wanci应助气味采纳,获得10
6秒前
索多倍完成签到 ,获得积分10
8秒前
9秒前
1111完成签到 ,获得积分10
10秒前
bbb发布了新的文献求助10
11秒前
11秒前
哼哼哈嘿完成签到,获得积分10
13秒前
能干季节完成签到,获得积分10
14秒前
14秒前
JrPaleo101应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
JJ应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
费雪卉应助科研通管家采纳,获得30
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
妮妮发布了新的文献求助10
16秒前
团子发布了新的文献求助20
17秒前
小橙子完成签到,获得积分10
17秒前
麻辣香郭完成签到 ,获得积分10
18秒前
18秒前
mm_zxh完成签到,获得积分10
19秒前
wy发布了新的文献求助10
19秒前
20秒前
九月发布了新的文献求助10
22秒前
宋雨完成签到,获得积分10
23秒前
气味发布了新的文献求助10
23秒前
24秒前
大个应助精明的安筠采纳,获得10
26秒前
MiLi完成签到,获得积分10
26秒前
27秒前
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805231
求助须知:如何正确求助?哪些是违规求助? 3350217
关于积分的说明 10347782
捐赠科研通 3066093
什么是DOI,文献DOI怎么找? 1683536
邀请新用户注册赠送积分活动 809047
科研通“疑难数据库(出版商)”最低求助积分说明 765205