亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Twins Transformer: Rolling Bearing Fault Diagnosis based on Cross-attention Fusion of Time and Frequency Domain Features

融合 变压器 频域 方位(导航) 断层(地质) 计算机科学 时域 人工智能 工程类 地质学 电气工程 计算机视觉 电压 地震学 语言学 哲学
作者
Zhikang Gao,Yanxue Wang,Xinming Li,Jiachi Yao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 096113-096113 被引量:7
标识
DOI:10.1088/1361-6501/ad53f1
摘要

Abstract Current self-attention based Transformer models in the field of fault diagnosis are limited to identifying correlation information within a single sequence and are unable to capture both time and frequency domain fault characteristics of the original signal. To address these limitations, this research introduces a two-channel Transformer fault diagnosis model that integrates time and frequency domain features through a cross-attention mechanism. Initially, the original time-domain fault signal is converted to the frequency domain using the Fast Fourier Transform, followed by global and local feature extraction via a Convolutional Neural Network. Next, through the self-attention mechanism on the two-channel Transformer, separate fault features associated with long distances within each sequence are modeled and then fed into the feature fusion module of the cross-attention mechanism. During the fusion process, frequency domain features serve as the query sequence Q and time domain features as the key-value pairs K. By calculating the attention weights between Q and K, the model excavates deeper fault features of the original signal. Besides preserving the intrinsic associative information within sequences learned via the self-attention mechanism, the Twins Transformer also models the degree of association between different sequence features using the cross-attention mechanism. Finally, the proposed model’s performance was validated using four different experiments on four bearing datasets, achieving average accuracy rates of 99.67%, 98.76%, 98.47% and 99.41%. These results confirm the model’s effective extraction of time and frequency domain correlation features, demonstrating fast convergence, superior performance and high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huhaha发布了新的文献求助20
2秒前
浅蓝完成签到 ,获得积分20
5秒前
lyc8211完成签到,获得积分10
12秒前
16秒前
17秒前
18秒前
bacteria发布了新的文献求助10
22秒前
mountainbike完成签到,获得积分10
25秒前
善良的冰颜完成签到 ,获得积分10
30秒前
31秒前
Keylor发布了新的文献求助10
52秒前
56秒前
59秒前
1分钟前
优雅啤酒发布了新的文献求助10
1分钟前
1分钟前
kkk发布了新的文献求助10
1分钟前
科研通AI5应助kkk采纳,获得30
1分钟前
枯藤老柳树完成签到,获得积分10
1分钟前
yangquanquan完成签到,获得积分10
1分钟前
英俊的铭应助优雅啤酒采纳,获得10
1分钟前
1分钟前
万能的悲剧完成签到 ,获得积分10
1分钟前
zhiwei完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
CipherSage应助33采纳,获得10
1分钟前
1分钟前
饼饼完成签到 ,获得积分10
1分钟前
苏震坤发布了新的文献求助10
1分钟前
Skywalk满天星完成签到,获得积分10
1分钟前
1分钟前
画船听雨眠完成签到,获得积分10
2分钟前
随便发布了新的文献求助10
2分钟前
Aloha完成签到,获得积分10
2分钟前
赘婿应助画船听雨眠采纳,获得10
2分钟前
2分钟前
Owen应助科研通管家采纳,获得30
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Finance: Theory and Policy. 12th Edition 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4408942
求助须知:如何正确求助?哪些是违规求助? 3893549
关于积分的说明 12114381
捐赠科研通 3538563
什么是DOI,文献DOI怎么找? 1941723
邀请新用户注册赠送积分活动 982423
科研通“疑难数据库(出版商)”最低求助积分说明 878837