Twins Transformer: Rolling Bearing Fault Diagnosis based on Cross-attention Fusion of Time and Frequency Domain Features

融合 变压器 频域 方位(导航) 断层(地质) 计算机科学 时域 人工智能 工程类 地质学 电气工程 计算机视觉 电压 地震学 哲学 语言学
作者
Zhikang Gao,Yanxue Wang,Xinming Li,Jiachi Yao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 096113-096113 被引量:5
标识
DOI:10.1088/1361-6501/ad53f1
摘要

Abstract Current self-attention based Transformer models in the field of fault diagnosis are limited to identifying correlation information within a single sequence and are unable to capture both time and frequency domain fault characteristics of the original signal. To address these limitations, this research introduces a two-channel Transformer fault diagnosis model that integrates time and frequency domain features through a cross-attention mechanism. Initially, the original time-domain fault signal is converted to the frequency domain using the Fast Fourier Transform, followed by global and local feature extraction via a Convolutional Neural Network. Next, through the self-attention mechanism on the two-channel Transformer, separate fault features associated with long distances within each sequence are modeled and then fed into the feature fusion module of the cross-attention mechanism. During the fusion process, frequency domain features serve as the query sequence Q and time domain features as the key-value pairs K. By calculating the attention weights between Q and K, the model excavates deeper fault features of the original signal. Besides preserving the intrinsic associative information within sequences learned via the self-attention mechanism, the Twins Transformer also models the degree of association between different sequence features using the cross-attention mechanism. Finally, the proposed model’s performance was validated using four different experiments on four bearing datasets, achieving average accuracy rates of 99.67%, 98.76%, 98.47% and 99.41%. These results confirm the model’s effective extraction of time and frequency domain correlation features, demonstrating fast convergence, superior performance and high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小吃完成签到,获得积分10
2秒前
SCIfafafafa发布了新的文献求助10
3秒前
不爱科研的科研小菜鸡完成签到,获得积分20
3秒前
张颖完成签到 ,获得积分10
3秒前
aa发布了新的文献求助10
4秒前
pluto应助xxhhh采纳,获得10
4秒前
很牛的ID发布了新的文献求助20
4秒前
tengfei应助真实的静珊采纳,获得10
5秒前
5秒前
8秒前
保安队长发布了新的文献求助10
8秒前
xxx7749发布了新的文献求助10
11秒前
12秒前
超级诗桃发布了新的文献求助10
13秒前
科研小白发布了新的文献求助10
14秒前
wxy发布了新的文献求助10
16秒前
Lucas应助雪山飞龙采纳,获得10
17秒前
SZ完成签到,获得积分20
18秒前
PLN完成签到 ,获得积分20
19秒前
19秒前
20秒前
tjxhtj完成签到,获得积分10
20秒前
21秒前
luckytuantuan发布了新的文献求助10
22秒前
大模型应助123采纳,获得10
22秒前
qqy发布了新的文献求助10
23秒前
斯文天曼发布了新的文献求助10
24秒前
海心完成签到 ,获得积分10
26秒前
kk关闭了kk文献求助
26秒前
雪山飞龙完成签到,获得积分10
26秒前
文都哲发布了新的文献求助10
27秒前
CYB完成签到,获得积分10
27秒前
Denning完成签到,获得积分10
28秒前
ningqing完成签到,获得积分10
29秒前
CipherSage应助YYL采纳,获得10
29秒前
30秒前
31秒前
31秒前
zhaimen完成签到 ,获得积分10
32秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3327071
关于积分的说明 10229393
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669742
邀请新用户注册赠送积分活动 799258
科研通“疑难数据库(出版商)”最低求助积分说明 758757