亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Residual Temporal Convolutional Network With Dual Attention Mechanism for Multilead-Time Interpretable Runoff Forecasting

残余物 计算机科学 对偶(语法数字) 地表径流 机制(生物学) 人工智能 卷积神经网络 算法 语言学 生态学 生物 认识论 哲学
作者
Ziyu Sheng,Yuting Cao,Yin Yang,Zhong-kai Feng,Kaibo Shi,Tingwen Huang,Shiping Wen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tnnls.2024.3411166
摘要

As a pivotal subfield within the domain of time series forecasting, runoff forecasting plays a crucial role in water resource management and scheduling. Recent advancements in the application of artificial neural networks (ANNs) and attention mechanisms have markedly enhanced the accuracy of runoff forecasting models. This article introduces an innovative hybrid model, ResTCN-DAM, which synergizes the strengths of deep residual network (ResNet), temporal convolutional networks (TCNs), and dual attention mechanisms (DAMs). The proposed ResTCN-DAM is designed to leverage the unique attributes of these three modules: TCN has outstanding capability to process time series data in parallel. By combining with modified ResNet, multiple TCN layers can be densely stacked to capture more hidden information in the temporal dimension. DAM module adeptly captures the interdependencies within both temporal and feature dimensions, adeptly accentuating relevant time steps/features while diminishing less significant ones with minimal computational cost. Furthermore, the snapshot ensemble method is able to obtain the effect of training multiple models through one single training process, which ensures the accuracy and robustness of the forecasts. The deep integration and collaborative cooperation of these modules comprehensively enhance the model's forecasting capability from various perspectives. Ablation studies conducted validate the efficacy of each module, and through multiple sets of comparative experiments, it is shown that the proposed ResTCN-DAM has exceptional and consistent performance across varying lead times. We also employ visualization techniques to display heatmaps of the model's weights, thereby enhancing the interpretability of the model. When compared with the prevailing neural network-based runoff forecasting models, ResTCN-DAM exhibits state-of-the-art accuracy, temporal robustness, and interpretability, positioning it at the forefront of contemporary research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星空完成签到,获得积分10
10秒前
香蕉觅云应助欣欣采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
19秒前
23秒前
欣欣发布了新的文献求助10
30秒前
WK完成签到,获得积分10
54秒前
1分钟前
1分钟前
追寻青柏发布了新的文献求助10
1分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
嘉嘉完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
从容芮完成签到,获得积分0
2分钟前
2分钟前
林非鹿完成签到 ,获得积分10
3分钟前
caca完成签到,获得积分0
3分钟前
3分钟前
章鱼完成签到,获得积分10
3分钟前
春天的粥完成签到 ,获得积分10
3分钟前
3分钟前
和谐的烙发布了新的文献求助30
3分钟前
追寻青柏发布了新的文献求助10
3分钟前
3分钟前
KYT完成签到 ,获得积分10
3分钟前
英姑应助从容小蘑菇采纳,获得10
3分钟前
和谐的烙完成签到,获得积分20
3分钟前
倾卿如玉完成签到 ,获得积分10
3分钟前
nvatk16完成签到,获得积分20
4分钟前
4分钟前
4分钟前
4分钟前
时尚的傲旋完成签到 ,获得积分10
4分钟前
4分钟前
快乐秋白发布了新的文献求助30
4分钟前
英俊的铭应助落寞的怜雪采纳,获得10
4分钟前
科研通AI5应助和谐的烙采纳,获得10
4分钟前
年轻的飞风完成签到,获得积分10
4分钟前
Delia完成签到,获得积分10
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788218
求助须知:如何正确求助?哪些是违规求助? 3333659
关于积分的说明 10262958
捐赠科研通 3049526
什么是DOI,文献DOI怎么找? 1673595
邀请新用户注册赠送积分活动 802070
科研通“疑难数据库(出版商)”最低求助积分说明 760504