Prediction and measurement for grinding force in wafer self-rotational grinding

研磨 材料科学 机械加工 薄脆饼 脆性 钻石 机械工程 金刚石研磨 砂轮 机械 复合材料 冶金 工程类 纳米技术 物理
作者
Hongfei Tao,Yuanhang Liu,Dewen Zhao,Xinchun Lu
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:258: 108530-108530 被引量:24
标识
DOI:10.1016/j.ijmecsci.2023.108530
摘要

The ultra-precision grinding technology based on a workpiece self-rotational principle is extensively used for silicon wafer thinning in the chip post-processing. Nevertheless, owing to the random nature of diamond grains and the unique machining manner of rotating components, accurate prediction and real-time monitoring of grinding forces remain a significant challenge in wafer self-rotational grinding (WSRG) process. This work establishes an improved theoretical model and builds a novel in-situ measurement system to analyze and detect the grinding force. Firstly, the motion trajectory and contact condition of diamond grains are explored. The grain–workpiece interactions are divided into rubbing, plowing, cutting and brittle stages. Secondly, the grinding force prediction model is proposed, which considers the combined effects of grain wear, grain randomness characteristics, brittle-to-ductile transition, elastic rebound, strain rate and grinding marks. Moreover, piezoelectric force sensors are employed to build the in-situ measurement system. The developed system is proven to simultaneously measure grinding forces online with continuous and stable output in the x, y and z directions. The impacts caused by feed rate, wheel speed and wafer speed are further revealed. Experimental results are consistent well with predicted ones, demonstrating a high prediction accuracy of the proposed grinding force model. Finally, a new index, namely the processing factor, is introduced to calculate the subsurface damage depth and residual stress for various machining parameters. This work not only enhances the understanding of predicting and measuring grinding force, but also provides a new method to evaluate the subsurface defects in brittle material grinding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡的棉花糖完成签到,获得积分10
刚刚
烟花应助勤奋的沛芹采纳,获得10
1秒前
慕青应助jacq采纳,获得10
1秒前
2秒前
xumingli完成签到,获得积分10
2秒前
小二郎应助Selina采纳,获得10
3秒前
冷酷男人完成签到,获得积分10
3秒前
ddd发布了新的文献求助10
3秒前
科研通AI6应助南明采纳,获得10
4秒前
4秒前
xiaojie发布了新的文献求助10
5秒前
5秒前
传奇3应助YXCT采纳,获得10
7秒前
Shulin完成签到 ,获得积分10
7秒前
吕敬瑶发布了新的文献求助10
8秒前
王一行关注了科研通微信公众号
8秒前
8秒前
脑洞疼应助ss采纳,获得10
8秒前
8秒前
123study0完成签到,获得积分10
9秒前
xumingli发布了新的文献求助10
9秒前
10秒前
yuhe完成签到,获得积分10
11秒前
科研小王完成签到,获得积分20
11秒前
Jason完成签到 ,获得积分10
12秒前
12秒前
12秒前
happyboy2008完成签到,获得积分10
12秒前
ddd完成签到,获得积分10
12秒前
12秒前
华仔应助爱做实验的泡利采纳,获得50
13秒前
自觉的绮烟完成签到,获得积分10
13秒前
健壮的花瓣完成签到 ,获得积分10
13秒前
韭黄发布了新的文献求助10
13秒前
沉鸢n发布了新的文献求助20
15秒前
宇宙帅船完成签到,获得积分10
16秒前
16秒前
17秒前
舒服的踏歌完成签到,获得积分10
17秒前
科研通AI6应助滴滴采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460799
求助须知:如何正确求助?哪些是违规求助? 4565904
关于积分的说明 14301938
捐赠科研通 4491378
什么是DOI,文献DOI怎么找? 2460301
邀请新用户注册赠送积分活动 1449659
关于科研通互助平台的介绍 1425492