MCR toolkit: A GPU‐based toolkit for multi‐channel reconstruction of preclinical and clinical x‐ray CT data

计算机科学 Python(编程语言) 迭代重建 投影(关系代数) 医学影像学 库达 人工智能 软件 MATLAB语言 计算机视觉 计算机图形学(图像) 医学物理学 计算科学 算法 医学 程序设计语言 操作系统
作者
Darin P. Clark,Cristian T. Badea
出处
期刊:Medical Physics [Wiley]
卷期号:50 (8): 4775-4796 被引量:5
标识
DOI:10.1002/mp.16532
摘要

Abstract Background The advancement of x‐ray CT into the domains of photon counting spectral imaging and dynamic cardiac and perfusion imaging has created many new challenges and opportunities for clinicians and researchers. To address challenges such as dose constraints and scanning times while capitalizing on opportunities such as multi‐contrast imaging and low‐dose coronary angiography, these multi‐channel imaging applications require a new generation of CT reconstruction tools. These new tools should exploit the relationships between imaging channels during reconstruction to set new image quality standards while serving as a platform for direct translation between the preclinical and clinical domains. Purpose We outline and demonstrate a new M ulti‐ C hannel R econstruction (MCR) Toolkit for GPU‐based analytical and iterative reconstruction of preclinical and clinical multi‐energy and dynamic x‐ray CT data. To promote open science, open‐source distribution of the Toolkit will coincide with the release of this publication (GPL v3; gitlab.oit.duke.edu/dpc18/mcr‐toolkit‐public). Methods The MCR Toolkit source code is implemented in C/C++ and NVIDIA's CUDA GPU programming interface, with scripting support from MATLAB and Python. The Toolkit implements matched, separable footprint CT reconstruction operators for projection and backprojection in two geometries: planar, cone‐beam CT (CBCT) and 3rd generation, cylindrical multi‐detector row CT (MDCT). Analytical reconstruction is performed using filtered backprojection (FBP) for circular CBCT, weighted FBP (WFBP) for helical CBCT, and cone‐parallel projection rebinning followed by WFBP for MDCT. Arbitrary combinations of energy and temporal channels are iteratively reconstructed under a generalized multi‐channel signal model for joint reconstruction. We solve this generalized model algebraically using the split Bregman optimization method and the BiCGSTAB(l) linear solver interchangeably for both CBCT and MDCT data. Rank‐sparse kernel regression (RSKR) and patch‐based singular value thresholding (pSVT) are used to regularize the energy and time dimensions, respectively. Under a Gaussian noise model, regularization parameters are estimated automatically from the input data, dramatically reducing algorithm complexity for end users. Multi‐GPU parallelization of the reconstruction operators is supported to manage reconstruction times. Results Denoising with RSKR and pSVT and post‐reconstruction material decomposition are illustrated with preclinical and clinical cardiac photon‐counting (PC)CT data. A digital MOBY mouse phantom with cardiac motion is used to illustrate single energy (SE), multi‐energy (ME), time resolved (TR), and combined multi‐energy and time‐resolved (METR) helical, CBCT reconstruction. A fixed set of projection data is used across all reconstruction cases to demonstrate the Toolkit's robustness to increasing data dimensionality. Identical reconstruction code is applied to in vivo cardiac PCCT data acquired in a mouse model of atherosclerosis (METR). Clinical cardiac CT reconstruction is illustrated using the XCAT phantom and the DukeSim CT simulator, while dual‐source, dual‐energy CT reconstruction is illustrated for data acquired with a Siemens Flash scanner. Benchmarking results with NVIDIA RTX 8000 GPU hardware demonstrate 61%–99% efficiency in scaling computation from one to four GPUs for these reconstruction problems. Conclusions The MCR Toolkit provides a robust solution for temporal and spectral x‐ray CT reconstruction problems and was built from the ground up to facilitate translation of CT research and development between preclinical and clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气高丽发布了新的文献求助150
1秒前
1秒前
爱看文献的芝加哥完成签到,获得积分20
1秒前
Owen应助丰富广缘采纳,获得10
2秒前
七个完成签到,获得积分10
2秒前
顾矜应助高高采纳,获得10
2秒前
lyn完成签到,获得积分10
2秒前
桐桐应助地狱跳跳虎采纳,获得10
2秒前
Vincent发布了新的文献求助10
2秒前
3秒前
CipherSage应助Stronger采纳,获得10
4秒前
耶耶驳回了华仔应助
4秒前
Erislastem发布了新的文献求助10
5秒前
6秒前
6秒前
8秒前
8秒前
10秒前
orixero应助Rg采纳,获得10
11秒前
地狱跳跳虎完成签到,获得积分10
12秒前
刘澳发布了新的文献求助10
12秒前
开朗曲奇发布了新的文献求助10
12秒前
Stronger完成签到,获得积分20
13秒前
崔风机完成签到,获得积分20
14秒前
丰富广缘发布了新的文献求助10
14秒前
loewy完成签到,获得积分10
14秒前
彭于晏应助王志远采纳,获得10
14秒前
16秒前
16秒前
机灵柚子应助采影子采纳,获得10
16秒前
香蕉觅云应助yy采纳,获得10
17秒前
17秒前
乐乐应助活泼的朝雪采纳,获得10
17秒前
17秒前
yaya关注了科研通微信公众号
18秒前
18秒前
19秒前
cdercder应助着急的雁露采纳,获得10
19秒前
honey发布了新的文献求助10
20秒前
甜甜冷菱发布了新的文献求助10
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814715
求助须知:如何正确求助?哪些是违规求助? 3358800
关于积分的说明 10397538
捐赠科研通 3076183
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813213
科研通“疑难数据库(出版商)”最低求助积分说明 767548