Formation of equiaxed grains in pure iron during laser powder bed fusion

作者
Ahmad Zafari,Ehsan Marzban Shirkharkolaei,Edward W. Lui,Constantinos Goulas,Davoud Jafari,Ian Gibson
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:39: 7325-7334
标识
DOI:10.1016/j.jmrt.2025.11.050
摘要

Microstructural evolution of commercially pure (CP) iron (Fe) fabricated by Laser Powder Bed Fusion (LPBF) was studied to investigate the mechanisms responsible for the formation of equiaxed grains during additive manufacturing, a surprising phenomenon in the additive manufacturing of cubic metals, which normally produces columnar grains. Detailed electron microscopy was performed on the LPBF bulk, adjacent laser tracks, and single-track samples to examine solidification and phase transformation sequences with and without reheating from neighbouring tracks or subsequent layers. The microstructure throughout the LPBF bulk, including the top layer with no reheating from above, was dominated by equiaxed grains with weak texture. In contrast, a single laser track consisted of lath-shaped colonies within prior columnar grains, creating a Widmanstätten pattern. Reheating from neighbouring laser tracks was sufficient to gradually transform these lath-shaped structures into equiaxed grains via recrystallisation and grain growth. Electron backscatter diffraction (EBSD) analysis revealed a transformation path of Liquid→δ-BCC→γ-FCC→α-BCC, in contrast to previously proposed Liquid→δ-BCC→α-BCC where the absence of γ-FCC due to rapid cooling was assumed. This was evidenced by reconstructed columnar γ-FCC from α-BCC EBSD data assuming FCC and BCC orientation relationships (ORs), as well as misorientation relationships across a wide range of specimens. The misorientation distributions were also studied to shed light on the early stages of microstructural development, the potential inheritance of the initial γ microstructure by the resulting α, and the progress of recrystallisation and grain growth throughout the process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无极微光应助hu采纳,获得20
1秒前
李健的小迷弟应助南瓜采纳,获得10
1秒前
传奇3应助舒庆春采纳,获得10
1秒前
yuantao完成签到,获得积分10
1秒前
3秒前
gali完成签到,获得积分10
3秒前
3秒前
牛超发布了新的文献求助10
5秒前
可爱的函函应助和岸采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
Twonej给林祥胜的求助进行了留言
7秒前
梵凡发布了新的文献求助10
7秒前
8秒前
bud关闭了bud文献求助
8秒前
orixero应助科研通管家采纳,获得10
9秒前
失眠依珊应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
失眠依珊应助科研通管家采纳,获得10
9秒前
9秒前
香蕉诗蕊应助科研通管家采纳,获得10
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
失眠依珊应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
asdfzxcv应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
asdfzxcv应助科研通管家采纳,获得10
10秒前
失眠依珊应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
asdfzxcv应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655235
求助须知:如何正确求助?哪些是违规求助? 4797761
关于积分的说明 15072315
捐赠科研通 4813685
什么是DOI,文献DOI怎么找? 2575312
邀请新用户注册赠送积分活动 1530695
关于科研通互助平台的介绍 1489301