Fine-Grained Multi-modal Fundus Image Generation Based on Diffusion Models for Glaucoma Classification

计算机科学 眼底(子宫) 青光眼 情态动词 人工智能 计算机视觉 眼科 医学 材料科学 高分子化学
作者
Xinyue Liu,Gang Yang,Yang Zhou,Yajie Yang,Weichen Huang,Dayong Ding,Jun Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 58-70
标识
DOI:10.1007/978-3-031-53302-0_5
摘要

With the emergence of Foundation Model, the generation quality and generalisation ability of image generation method have been further improved. However, medical image generation is still a challenging and promising task. Recently, diffusion-based models are more prominent in multi-modal image generation for its flexibility. Therefore, in order to solve the problem of lack of high-quality medical images and high annotation costs, we propose a fine-grained multi-modal fundus image generation method based on foundation models to research an efficient way of data augmentation. First, we adopt optic fundus images, fundus vessel images and class textual information to form a weakly supervised fine-tuning dataset. Then, based on the Stable-Diffusion and Control-Net model, we fine-tune our method by LoRA model to generate high-resolution fundus images of special diseases in a targeted manner. Furthermore, we use these synthetic fundus images in conjunction with existing datasets for data augmentation or model fine-tuning to improve performance in the glaucoma classification task. Extensive experiments have shown that our method produces high quality medical fundus images and can be well applied to real-world medical imaging tasks. Moreover, experimental results show that we are able to generate fundus images that act as an augmentation, meaning that the generation of foundation models is effective in certain domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科目三应助cxt采纳,获得10
2秒前
猪猪hero发布了新的文献求助10
3秒前
3秒前
闪闪凡霜完成签到,获得积分10
4秒前
在水一方应助kunkun采纳,获得10
4秒前
微尘完成签到 ,获得积分10
6秒前
丫丫发布了新的文献求助50
6秒前
6秒前
李爱国应助杨震采纳,获得30
10秒前
weiyange发布了新的文献求助10
10秒前
缓慢沁完成签到,获得积分10
11秒前
GodZ完成签到,获得积分20
11秒前
完美世界应助queen采纳,获得10
12秒前
文艺的筮完成签到 ,获得积分10
13秒前
15秒前
16秒前
悠旷完成签到 ,获得积分10
16秒前
16秒前
Kathy完成签到,获得积分10
18秒前
19秒前
清歌浊酒完成签到,获得积分10
19秒前
jincheng发布了新的文献求助200
19秒前
19秒前
huichuanyin完成签到 ,获得积分10
20秒前
20秒前
clara完成签到,获得积分10
21秒前
霸气咖啡豆完成签到,获得积分10
21秒前
21秒前
21秒前
大钱哥完成签到,获得积分10
22秒前
拉扣发布了新的文献求助10
22秒前
认真的沛容完成签到 ,获得积分10
22秒前
HZQ应助Kathy采纳,获得30
23秒前
hhh发布了新的文献求助10
23秒前
keyanDOG发布了新的文献求助10
23秒前
无辜妙海完成签到,获得积分10
24秒前
屿溡完成签到,获得积分10
25秒前
ssj发布了新的文献求助10
25秒前
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4120296
求助须知:如何正确求助?哪些是违规求助? 3658616
关于积分的说明 11581680
捐赠科研通 3360245
什么是DOI,文献DOI怎么找? 1846241
邀请新用户注册赠送积分活动 911149
科研通“疑难数据库(出版商)”最低求助积分说明 827338