Deconfounded Cross-modal Matching for Content-based Micro-video Background Music Recommendation

计算机科学 匹配(统计) 情态动词 估计员 公制(单位) 虚假关系 情报检索 机器学习 统计 运营管理 经济 化学 数学 高分子化学
作者
Jing Yi,Zhenzhong Chen
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:15 (3): 1-25
标识
DOI:10.1145/3650042
摘要

Object-oriented micro-video background music recommendation is a complicated task where the matching degree between videos and background music is a major issue. However, music selections in user-generated content (UGC) are prone to selection bias caused by historical preferences of uploaders. Since historical preferences are not fully reliable and may reflect obsolete behaviors, over-reliance on them should be avoided as knowledge and interests dynamically evolve. In this article, we propose a Deconfounded Cross-Modal matching model to mitigate such bias. Specifically, uploaders’ personal preferences of music genres are identified as confounders that spuriously correlate music embeddings and background music selections, causing the learned system to over-recommend music from majority groups. To resolve such confounders, backdoor adjustment is utilized to deconfound the spurious correlation between music embeddings and prediction scores. We further utilize Monte Carlo estimator with batch-level average as the approximations to avoid integrating the entire confounder space calculated by the adjustment. Furthermore, we design a teacher–student network to utilize the matching of music videos, which is professionally generated content (PGC) with specialized matching, to better recommend content-matching background music. The PGC data are modeled by a teacher network to guide the matching of uploader-selected UGC data of student network by Kullback–Leibler–based knowledge transfer. Extensive experiments on the TT-150k-genre dataset demonstrate the effectiveness of the proposed method. The code is publicly available on https://github.com/jing-1/DecCM
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Docline完成签到,获得积分10
1秒前
Lucas应助南风采纳,获得10
3秒前
乐乐应助Fngz3采纳,获得10
3秒前
3秒前
Xiehf完成签到,获得积分10
5秒前
77完成签到 ,获得积分20
5秒前
iNk应助gcl_wzf采纳,获得10
7秒前
8秒前
8秒前
9秒前
海虎爆破拳完成签到,获得积分10
9秒前
夯大力完成签到,获得积分10
9秒前
10秒前
Xinxxx发布了新的文献求助10
11秒前
公孙朝雨完成签到,获得积分10
12秒前
传奇3应助水流众生采纳,获得10
13秒前
13秒前
SRQ发布了新的文献求助10
13秒前
drtianyunhong完成签到,获得积分10
13秒前
丙烯酸树脂完成签到,获得积分10
14秒前
mingming发布了新的文献求助10
14秒前
sugar完成签到,获得积分10
14秒前
14秒前
呆萌凤完成签到 ,获得积分10
15秒前
15秒前
远看寒山完成签到,获得积分10
16秒前
我是老大应助张亨彬采纳,获得10
16秒前
xue112完成签到 ,获得积分10
16秒前
小烦同学完成签到,获得积分10
16秒前
十八子完成签到,获得积分10
18秒前
冷酷莺发布了新的文献求助10
18秒前
顺利南珍完成签到,获得积分20
21秒前
细心的梦芝完成签到,获得积分10
21秒前
ding应助xiaohuang采纳,获得10
21秒前
自由月亮完成签到 ,获得积分10
22秒前
22秒前
23秒前
iNk应助idynamics采纳,获得10
24秒前
零吾完成签到 ,获得积分10
24秒前
李健应助叮当的猫采纳,获得10
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798603
求助须知:如何正确求助?哪些是违规求助? 3344274
关于积分的说明 10319445
捐赠科研通 3060850
什么是DOI,文献DOI怎么找? 1679798
邀请新用户注册赠送积分活动 806778
科研通“疑难数据库(出版商)”最低求助积分说明 763372