A Transformer‐Based microvascular invasion classifier enhances prognostic stratification in HCC following radiofrequency ablation

队列 肝细胞癌 危险系数 比例危险模型 医学 磁共振成像 置信区间 胃肠病学 肝硬化 内科学 肿瘤科 放射科
作者
Wentao Wang,Yueyue Wang,Danjun Song,Yingting Zhou,Rongkui Luo,Si-Qi Ying,Li Yang,Wei Sun,Jia‐Bin Cai,Xi Wang,Zhen Bao,Jiaping Zheng,Mengsu Zeng,Qiang Gao,Xiaoying Wang,Jian Zhou,Manning Wang,Guoliang Shao,Shengxiang Rao,Kai Zhu
出处
期刊:Liver International [Wiley]
卷期号:44 (4): 894-906 被引量:5
标识
DOI:10.1111/liv.15846
摘要

Abstract Background & Aims We aimed to develop a Transformer‐based deep learning (DL) network for prognostic stratification in hepatocellular carcinoma (HCC) patients undergoing RFA. Methods A Swin Transformer DL network was trained to establish associations between magnetic resonance imaging (MRI) datasets and the ground truth of microvascular invasion (MVI) based on 696 surgical resection (SR) patients with solitary HCC ≤3 cm, and was validated in an external cohort ( n = 180). The multiphase MRI‐based DL risk outputs using an optimal threshold of .5 was employed as a MVI classifier for prognosis stratification in the RFA cohort ( n = 180). Results Over 90% of all enrolled patients exhibited hepatitis B virus infection. Liver cirrhosis was significantly more prevalent in the RFA cohort compared to the SR cohort (72.2% vs. 44.1%, p < .001). The MVI risk outputs exhibited good performance (area under the curve values = .938 and .883) for predicting MVI in the training and validation cohort, respectively. The RFA patients at high risk of MVI classified by the MVI classifier demonstrated significantly lower recurrence‐free survival (RFS) and overall survival rates at 1, 3 and 5 years compared to those classified as low risk ( p < .001). Multivariate cox regression modelling of a‐fetoprotein > 20 ng/mL [hazard ratio (HR) = 1.53; 95% confidence interval (95% CI): 1.02–2.33, p = .047], high risk of MVI (HR = 3.76; 95% CI: 2.40–5.88, p < .001) and unfavourable tumour location (HR = 2.15; 95% CI: 1.40–3.29, p = .001) yielded a c‐index of .731 (bootstrapped 95% CI: .667–.778) for evaluating RFS after RFA. Among the three risk factors, MVI was the most powerful predictor for intrahepatic distance recurrence. Conclusions The proposed MVI classifier can serve as a valuable imaging biomarker for prognostic stratification in early‐stage HCC patients undergoing RFA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李久兴应助被飓风狙击手采纳,获得20
刚刚
coolkid应助科研通管家采纳,获得10
2秒前
coolkid应助科研通管家采纳,获得10
2秒前
aldehyde应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
非而者厚应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
自由草丛应助科研通管家采纳,获得10
3秒前
3秒前
coolkid应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Ray完成签到,获得积分10
5秒前
平常的毛豆应助Eric采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
随便完成签到 ,获得积分10
6秒前
8秒前
Orange应助木木木采纳,获得10
10秒前
rongtong完成签到,获得积分10
10秒前
10秒前
13秒前
14秒前
CipherSage应助崔帅采纳,获得10
14秒前
doctor完成签到,获得积分10
15秒前
16秒前
17秒前
橙子快跑发布了新的文献求助10
18秒前
21秒前
汉堡包应助小郭真的菜采纳,获得10
23秒前
23秒前
木木木发布了新的文献求助10
24秒前
侃侃发布了新的文献求助10
25秒前
25秒前
26秒前
英俊的铭应助哈h采纳,获得10
27秒前
MJ发布了新的文献求助200
28秒前
丘比特应助Q123ba叭采纳,获得10
28秒前
lainey发布了新的文献求助10
28秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865447
求助须知:如何正确求助?哪些是违规求助? 3407786
关于积分的说明 10655821
捐赠科研通 3131904
什么是DOI,文献DOI怎么找? 1727400
邀请新用户注册赠送积分活动 832257
科研通“疑难数据库(出版商)”最低求助积分说明 780189