亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning and Single-Cell Analysis Identify Molecular Features of IPF-Associated Fibroblast Subtypes and Their Implications on IPF Prognosis

特发性肺纤维化 成纤维细胞 疾病 纤维化 生物 医学 病理 癌症研究 细胞培养 内科学 遗传学
作者
Jiwei Hou,Yanru Yang,Xin Han
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:25 (1): 94-94
标识
DOI:10.3390/ijms25010094
摘要

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease of unknown cause, and the involvement of fibroblasts in its pathogenesis is well recognized. However, a comprehensive understanding of fibroblasts’ heterogeneity, their molecular characteristics, and their clinical relevance in IPF is lacking. In this study, we aimed to systematically classify fibroblast populations, uncover the molecular and biological features of fibroblast subtypes in fibrotic lung tissue, and establish an IPF-associated, fibroblast-related predictive model for IPF. Herein, a meticulous analysis of scRNA-seq data obtained from lung tissues of both normal and IPF patients was conducted to identify fibroblast subpopulations in fibrotic lung tissues. In addition, hdWGCNA was utilized to identify co-expressed gene modules associated with IPF-related fibroblasts. Furthermore, we explored the prognostic utility of signature genes for these IPF-related fibroblast subtypes using a machine learning-based approach. Two predominant fibroblast subpopulations, termed IPF-related fibroblasts, were identified in fibrotic lung tissues. Additionally, we identified co-expressed gene modules that are closely associated with IPF-fibroblasts by utilizing hdWGCNA. We identified gene signatures that hold promise as prognostic markers in IPF. Moreover, we constructed a predictive model specifically focused on IPF-fibroblasts which can be utilized to assess disease prognosis in IPF patients. These findings have the potential to improve disease prediction and facilitate targeted interventions for patients with IPF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
李繁蕊发布了新的文献求助10
1秒前
白三问发布了新的文献求助10
4秒前
4秒前
开朗涫发布了新的文献求助10
6秒前
能干的语芙完成签到 ,获得积分10
9秒前
hahamissyu完成签到,获得积分10
9秒前
李繁蕊完成签到,获得积分10
17秒前
K先生完成签到 ,获得积分10
19秒前
20秒前
黑大侠完成签到 ,获得积分10
20秒前
大溺完成签到 ,获得积分10
21秒前
科研通AI5应助任性铅笔采纳,获得10
21秒前
合一海盗完成签到,获得积分10
27秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
32秒前
yan发布了新的文献求助10
37秒前
kento发布了新的文献求助10
39秒前
科研通AI5应助晴晴采纳,获得10
42秒前
都是发布了新的文献求助30
43秒前
风筝鱼完成签到 ,获得积分10
44秒前
lahaa完成签到,获得积分10
48秒前
49秒前
50秒前
54秒前
彩色小凡发布了新的文献求助10
54秒前
无辜的采蓝完成签到,获得积分10
55秒前
Linden_bd完成签到 ,获得积分10
57秒前
紫韵发布了新的文献求助10
59秒前
bkagyin应助大孙采纳,获得10
59秒前
脑洞疼应助都是采纳,获得10
59秒前
1分钟前
大模型应助开朗涫采纳,获得10
1分钟前
研友_89eRG8完成签到,获得积分10
1分钟前
虎虎虎发布了新的文献求助10
1分钟前
科研通AI5应助任性铅笔采纳,获得10
1分钟前
z_rainbow完成签到,获得积分10
1分钟前
虎虎虎完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815701
求助须知:如何正确求助?哪些是违规求助? 3359287
关于积分的说明 10402026
捐赠科研通 3077095
什么是DOI,文献DOI怎么找? 1690059
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767694