服务拒绝攻击
计算机科学
计算机安全
自然语言处理
万维网
互联网
作者
Michael Guastalla,Yiyi Li,Arvin Hekmati,Bhaskar Krishnamachari
标识
DOI:10.1007/978-3-031-51630-6_6
摘要
Network security remains a pressing concern in the digital era, with the rapid advancement of technology opening up new avenues for cyber threats. One emergent solution lies in the application of large language models (LLMs), like OpenAI's ChatGPT, which harness the power of artificial intelligence for enhanced security measures. As the proliferation of connected devices and systems increases, the potential for Distributed Denial of Service (DDoS) attacks—a prime example of network security threats—grows as well. This article explores the potential of LLMs in bolstering network security, specifically in detecting DDoS attacks. This paper investigates the aptitude of large language models (LLMs), such as OpenAI's ChatGPT variants (GPT-3.5, GPT-4, and Ada), in enhancing DDoS detection capabilities. We contrasted the efficacy of LLMs against traditional neural networks using two datasets: CICIDS 2017 and the more intricate Urban IoT Dataset. Our findings indicate that LLMs, when applied in a few-shot learning context or through fine-tuning, can not only detect potential DDoS threats with significant accuracy but also elucidate their reasoning. Specifically, fine-tuning achieved an accuracy of approximately 95% on the CICIDS 2017 dataset and close to 96% on the Urban IoT Dataset for aggressive DDoS attacks. These results surpass those of a multi-layer perceptron (MLP) trained with analogous data.
科研通智能强力驱动
Strongly Powered by AbleSci AI