Application of Large Language Models to DDoS Attack Detection

服务拒绝攻击 计算机科学 计算机安全 自然语言处理 万维网 互联网
作者
Michael Guastalla,Yiyi Li,Arvin Hekmati,Bhaskar Krishnamachari
标识
DOI:10.1007/978-3-031-51630-6_6
摘要

Network security remains a pressing concern in the digital era, with the rapid advancement of technology opening up new avenues for cyber threats. One emergent solution lies in the application of large language models (LLMs), like OpenAI's ChatGPT, which harness the power of artificial intelligence for enhanced security measures. As the proliferation of connected devices and systems increases, the potential for Distributed Denial of Service (DDoS) attacks—a prime example of network security threats—grows as well. This article explores the potential of LLMs in bolstering network security, specifically in detecting DDoS attacks. This paper investigates the aptitude of large language models (LLMs), such as OpenAI's ChatGPT variants (GPT-3.5, GPT-4, and Ada), in enhancing DDoS detection capabilities. We contrasted the efficacy of LLMs against traditional neural networks using two datasets: CICIDS 2017 and the more intricate Urban IoT Dataset. Our findings indicate that LLMs, when applied in a few-shot learning context or through fine-tuning, can not only detect potential DDoS threats with significant accuracy but also elucidate their reasoning. Specifically, fine-tuning achieved an accuracy of approximately 95% on the CICIDS 2017 dataset and close to 96% on the Urban IoT Dataset for aggressive DDoS attacks. These results surpass those of a multi-layer perceptron (MLP) trained with analogous data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cslghe完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
ZZ完成签到,获得积分10
1秒前
guochenggong完成签到,获得积分20
1秒前
3秒前
cdercder应助DouBo采纳,获得10
4秒前
Deila完成签到 ,获得积分0
4秒前
崔梦楠完成签到 ,获得积分10
5秒前
ww发布了新的文献求助10
5秒前
嘻嘻嘻完成签到,获得积分10
5秒前
5秒前
猛男发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
JamesPei应助Bunny采纳,获得20
7秒前
后陡门编外完成签到,获得积分10
7秒前
Owen应助aaawen采纳,获得10
7秒前
7秒前
7秒前
7秒前
无花果应助热心火车采纳,获得10
7秒前
童小肥完成签到,获得积分10
7秒前
8秒前
陆绮梅发布了新的文献求助10
8秒前
小石完成签到,获得积分10
8秒前
8秒前
慕青应助苏格拉底的嘲笑采纳,获得10
9秒前
Chanyl发布了新的文献求助10
10秒前
暖暖完成签到 ,获得积分10
11秒前
11秒前
科研挂发布了新的文献求助10
11秒前
青青发布了新的文献求助10
11秒前
张哈哈发布了新的文献求助10
11秒前
11秒前
zhu发布了新的文献求助10
12秒前
12秒前
小石发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786282
求助须知:如何正确求助?哪些是违规求助? 3332048
关于积分的说明 10253238
捐赠科研通 3047330
什么是DOI,文献DOI怎么找? 1672506
邀请新用户注册赠送积分活动 801330
科研通“疑难数据库(出版商)”最低求助积分说明 760141