清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Data-Efficient Learning Control of Continuum Robots in Constrained Environments

机器人 控制(管理) 控制工程 计算机科学 控制理论(社会学) 工程类 人工智能
作者
Hangjie Mo,Ruofeng Wei,Xiaowen Kong,Yujia Zhai,Yunhui Liu,Dong Sun
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:2
标识
DOI:10.1109/tase.2024.3357816
摘要

This research investigates learning-based control of continuum robots in constrained environments without relying on analytical models. We propose a data-efficient stochastic control strategy incorporating online model updates to achieve precise manipulation even when arbitrary robot deformations occur due to environmental interactions. A localized Gaussian process regression approach accounting for state stochasticity is first presented to approximate the forward kinematics. The learned model enables uncertainty-aware stochastic predictions via the proposed scaled unscented transform (SUT)-based method for efficient exploration. Leveraging new data, online model updates are performed in a highly sample-efficient manner. Furthermore, a probabilistic model predictive control approach integrating the learned models and chance constraints based on Chebyshev's inequality is developed for searching an optimal control sequence. Simulations and experiments are performed to demonstrate the effectiveness of the proposed approach for controlling continuum robots in constrained environments using limited observational data. Note to Practitioners —The motivation of this research is to solve the problem of controlling continuum robots in constraint environment. The flexibility of continuum robots significantly affects the manipulation accuracy, and the interaction between the continuum robot and environmental constraints can also lead to unpredictable behavior. Learning control methods that rely only on sensory data, provide a feasible solution to the aforementioned problem. However, current methods lack sample efficiency and the capability to handle unknown environmental constraints. This research proposes a learning control method which can control a flexible continuum robot in constrained environments with high data-efficiency and robustness even when the robot shape undergoes sudden deformations due to contact with obstacles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助雪山飞龙采纳,获得10
1秒前
13633501455完成签到 ,获得积分10
2秒前
英俊的铭应助雪山飞龙采纳,获得10
9秒前
个性仙人掌完成签到 ,获得积分10
9秒前
科研通AI5应助小兔子采纳,获得10
9秒前
深情安青应助雪山飞龙采纳,获得10
20秒前
21秒前
小兔子发布了新的文献求助10
27秒前
皮皮完成签到 ,获得积分10
34秒前
善学以致用应助巴山夜雨采纳,获得10
35秒前
43秒前
zjq完成签到 ,获得积分10
44秒前
巴山夜雨发布了新的文献求助10
49秒前
59秒前
眯眯眼的安雁完成签到 ,获得积分10
1分钟前
a61发布了新的文献求助10
1分钟前
蝎子莱莱xth完成签到,获得积分10
1分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
1分钟前
Square完成签到,获得积分10
1分钟前
蓝意完成签到,获得积分0
1分钟前
John完成签到 ,获得积分10
1分钟前
我有我风格完成签到 ,获得积分10
1分钟前
jzm完成签到 ,获得积分20
1分钟前
www发布了新的文献求助10
2分钟前
gwbk完成签到,获得积分10
2分钟前
Zzz_Carlos完成签到 ,获得积分10
2分钟前
lling完成签到 ,获得积分10
2分钟前
Tong完成签到,获得积分0
2分钟前
chcmy完成签到 ,获得积分0
2分钟前
海阔天空完成签到 ,获得积分10
2分钟前
zijingsy完成签到 ,获得积分10
2分钟前
nano完成签到 ,获得积分10
2分钟前
3分钟前
bb发布了新的文献求助10
3分钟前
风趣的冬卉完成签到 ,获得积分10
3分钟前
livra1058完成签到,获得积分10
3分钟前
酷波er应助小兔子采纳,获得10
3分钟前
3分钟前
小兔子发布了新的文献求助10
3分钟前
余慵慵完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Revision of the Australian Thynnidae and Tiphiidae (Hymenoptera) 500
Instant Bonding Epoxy Technology 500
Pipeline Integrity Management Under Geohazard Conditions (PIMG) 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4360405
求助须知:如何正确求助?哪些是违规求助? 3861865
关于积分的说明 12044504
捐赠科研通 3503875
什么是DOI,文献DOI怎么找? 1922996
邀请新用户注册赠送积分活动 965253
科研通“疑难数据库(出版商)”最低求助积分说明 864684