Combined severe plastic deformation processing of commercial purity titanium enables superior fatigue resistance for next generation implants

材料科学 严重塑性变形 微观结构 延展性(地球科学) 腐蚀 挤锻 生物相容性 疲劳极限 极限抗拉强度 冶金 钛合金 变形(气象学) 植入 复合材料 合金 蠕动 外科 医学
作者
Alexander Kopp,Jonas Werner,Nadja Kröger,Thomas E. Weirich,F. D’Elia
出处
期刊:Biomaterials advances [Elsevier BV]
卷期号:157: 213756-213756 被引量:5
标识
DOI:10.1016/j.bioadv.2023.213756
摘要

Commercial purity titanium (cp-Ti) is considered for replacing Ti64 as an implant material in various applications, due to the potential toxicity associated with the release of Al and V ions. However, the mechanical properties of cp-Ti, particularly fatigue resistance, are inadequate for this purpose. In this study, cp-Ti grade 4 rods were processed using a combination of equal channel angular pressing and rotary swaging (ECAP/RS). Tensile and fatigue tests were conducted, along with detailed microscopy and evaluation of corrosion resistance and biocompatibility. An average yield strength of 1383 MPa was obtained while maintaining moderate ductility of 10 %. This represents the highest strength ever recorded for cp-Ti, even exceeding that of Ti64. Additionally, fatigue endurance limit increased by 43 % up to 600 MPa, almost obtaining that of Ti64. Strengthening mechanisms were attributed to the ultrafine-grained (UFG) microstructure generated by ECAP/RS, along with strong crystallographic texture and formation of sub-grain structure. Furthermore, the corrosion resistance and biocompatibility of cp-Ti were largely unaffected, potentially easing regulatory transition in future medical devices. Thus, these results demonstrate high potential of combined ECAP/RS processing to manufacture UFG cp-Ti grade 4 materials that prospectively allow for the substitution of questionable alloys and downsizing of medical implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Simlove完成签到,获得积分20
1秒前
jzhou88发布了新的文献求助10
2秒前
2秒前
2秒前
Acou2013关注了科研通微信公众号
2秒前
gapsong完成签到,获得积分10
3秒前
3秒前
4秒前
九月y9完成签到,获得积分10
4秒前
4秒前
不摇碧莲完成签到 ,获得积分10
5秒前
七里香完成签到 ,获得积分10
6秒前
7秒前
lihua完成签到,获得积分10
8秒前
8秒前
姣姣发布了新的文献求助10
8秒前
lihailong发布了新的文献求助10
9秒前
yyhh发布了新的文献求助10
9秒前
9秒前
10秒前
所所应助卡卡采纳,获得10
11秒前
11秒前
柠觉呢发布了新的文献求助10
11秒前
suyunzhe发布了新的文献求助10
13秒前
13秒前
唐飒发布了新的文献求助10
14秒前
鸣笛应助qingfeng采纳,获得60
15秒前
Lucas应助飞稿采纳,获得10
15秒前
AJW关闭了AJW文献求助
16秒前
16秒前
搞怪不斜发布了新的文献求助30
16秒前
17秒前
Zz完成签到 ,获得积分10
17秒前
17秒前
17秒前
充电宝应助xsuvian采纳,获得10
19秒前
19秒前
平淡的初翠完成签到,获得积分10
19秒前
酷炫无敌发布了新的文献求助10
19秒前
我是老大应助Ricardo采纳,获得30
20秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896855
求助须知:如何正确求助?哪些是违规求助? 3440653
关于积分的说明 10818317
捐赠科研通 3165678
什么是DOI,文献DOI怎么找? 1748889
邀请新用户注册赠送积分活动 845021
科研通“疑难数据库(出版商)”最低求助积分说明 788392