Assessment and prediction of significant wave height using hybrid CNN-BiLSTM deep learning model for sustainable wave energy in Australia

人工智能 能量(信号处理) 波浪模型 深度学习 计算机科学 地理 气象学 数学 统计
作者
Nawin Raj,Reema Prakash
出处
期刊:Sustainable horizons [Elsevier]
卷期号:11: 100098-100098 被引量:22
标识
DOI:10.1016/j.horiz.2024.100098
摘要

Wave energy is regarded as one of the powerful renewable energy sources and depends on the assessment of significant wave height (Hs) for feasibility. Hence, this study explores the potential of wave energy by assessing and predicting Hs for two study sites in Queensland (Emu Park and Townsville), Australia. Assessment and prediction of Hs is extremely important for reliable planning, cost management and implementation of wave energy projects. The study utilized oceanic datasets based on wave measurements obtained from buoys along coastal regions of Queensland that are transmitted to nearby receiver stations. The parameters of the datasets include maximum wave height, zero up crossing wave period, peak energy wave period and sea surface temperature to accurately predict Hs. A new hybrid Convolutional Neural Network (CNN) and Bidirectional Long Short Term (BiLSTM) deep learning model with Multivariate Variational Mode Decomposition (MVMD) is developed which is benchmarked by Multi-Layer Perceptron (MLP), Random Forest (RF) and Categorical Boosting (CatBoost) to compare the performance. All models attain relatively high-performance results. The MVMD-CNN-BiLSTM attains slightly better performance values for both study sites among all developed models with highest correlation values of 0.9957 and 0.9986 for Emu Park and Townsville, respectively. Other performance evaluation metrics were also higher for MVMD-CNN-BiLSTM with lowest error values in comparison to the benchmark models. The annual mean of Hs is also computed to compare and obtain an insight with a linear projection. There is a greater ocean wave energy potential for Emu Park for a 10-year period with a projected mean Hs of 0.865 m in comparison to Townsville where the projected mean was of 0.665 m.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大龙哥886应助幽默的傲南采纳,获得10
刚刚
123456发布了新的文献求助10
2秒前
2秒前
完美世界应助Red-Rain采纳,获得10
2秒前
3秒前
科研通AI6应助zzhh采纳,获得10
4秒前
c57的杀手完成签到 ,获得积分10
5秒前
可爱的函函应助C14H10采纳,获得10
5秒前
清沧炽魂发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
2049510053发布了新的文献求助10
7秒前
老温完成签到,获得积分10
7秒前
8秒前
8秒前
zain发布了新的文献求助20
9秒前
正直无极完成签到,获得积分10
10秒前
11秒前
11秒前
机灵的沛槐完成签到,获得积分10
11秒前
Red-Rain完成签到,获得积分10
12秒前
五月初夏发布了新的文献求助10
13秒前
成就老太发布了新的文献求助10
13秒前
正直千兰完成签到,获得积分10
13秒前
Hello应助JR采纳,获得10
13秒前
Bismarck发布了新的文献求助10
13秒前
14秒前
Red-Rain发布了新的文献求助10
15秒前
16秒前
ccc发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
张步完成签到 ,获得积分10
19秒前
19秒前
核桃应助一颗好困芽采纳,获得10
20秒前
Jello发布了新的文献求助10
21秒前
21秒前
juqiu发布了新的文献求助10
22秒前
成就老太完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533516
求助须知:如何正确求助?哪些是违规求助? 4621739
关于积分的说明 14580171
捐赠科研通 4561894
什么是DOI,文献DOI怎么找? 2499647
邀请新用户注册赠送积分活动 1479350
关于科研通互助平台的介绍 1450600