已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Assessment and prediction of significant wave height using hybrid CNN-BiLSTM deep learning model for sustainable wave energy in Australia

人工智能 能量(信号处理) 波浪模型 深度学习 计算机科学 地理 气象学 数学 统计
作者
Nawin Raj,Reema Prakash
出处
期刊:Sustainable horizons [Elsevier]
卷期号:11: 100098-100098 被引量:5
标识
DOI:10.1016/j.horiz.2024.100098
摘要

Wave energy is regarded as one of the powerful renewable energy sources and depends on the assessment of significant wave height (Hs) for feasibility. Hence, this study explores the potential of wave energy by assessing and predicting Hs for two study sites in Queensland (Emu Park and Townsville), Australia. Assessment and prediction of Hs is extremely important for reliable planning, cost management and implementation of wave energy projects. The study utilized oceanic datasets based on wave measurements obtained from buoys along coastal regions of Queensland that are transmitted to nearby receiver stations. The parameters of the datasets include maximum wave height, zero up crossing wave period, peak energy wave period and sea surface temperature to accurately predict Hs. A new hybrid Convolutional Neural Network (CNN) and Bidirectional Long Short Term (BiLSTM) deep learning model with Multivariate Variational Mode Decomposition (MVMD) is developed which is benchmarked by Multi-Layer Perceptron (MLP), Random Forest (RF) and Categorical Boosting (CatBoost) to compare the performance. All models attain relatively high-performance results. The MVMD-CNN-BiLSTM attains slightly better performance values for both study sites among all developed models with highest correlation values of 0.9957 and 0.9986 for Emu Park and Townsville, respectively. Other performance evaluation metrics were also higher for MVMD-CNN-BiLSTM with lowest error values in comparison to the benchmark models. The annual mean of Hs is also computed to compare and obtain an insight with a linear projection. There is a greater ocean wave energy potential for Emu Park for a 10-year period with a projected mean Hs of 0.865 m in comparison to Townsville where the projected mean was of 0.665 m.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wqq完成签到,获得积分10
1秒前
AAA完成签到,获得积分10
1秒前
2秒前
3秒前
周心雨给周心雨的求助进行了留言
3秒前
神勇的晟睿完成签到 ,获得积分10
3秒前
灭亡完成签到,获得积分10
3秒前
星辰大海应助小张采纳,获得10
5秒前
Yy杨优秀发布了新的文献求助10
6秒前
7秒前
racill发布了新的文献求助10
7秒前
8秒前
lull完成签到,获得积分10
8秒前
JamesPei应助ChenCC采纳,获得10
9秒前
小蘑菇应助20230321采纳,获得10
9秒前
烟花应助GGbone采纳,获得10
10秒前
大方忆秋完成签到 ,获得积分10
11秒前
彭于晏应助Yy杨优秀采纳,获得10
11秒前
12秒前
司徒寒烟完成签到,获得积分10
13秒前
ohh发布了新的文献求助10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
15秒前
15秒前
Lucas应助科研通管家采纳,获得30
15秒前
未解的波完成签到,获得积分20
15秒前
lemontree完成签到,获得积分10
16秒前
GGbone完成签到,获得积分10
16秒前
BEWATER发布了新的文献求助10
18秒前
不闻不问完成签到,获得积分10
19秒前
lemontree发布了新的文献求助20
19秒前
浅音完成签到,获得积分10
19秒前
微风关注了科研通微信公众号
20秒前
20秒前
20秒前
苹果小玉发布了新的文献求助10
20秒前
20秒前
21秒前
EverySoda完成签到 ,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784654
求助须知:如何正确求助?哪些是违规求助? 3329803
关于积分的说明 10243452
捐赠科研通 3045163
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800470
科研通“疑难数据库(出版商)”最低求助积分说明 759399