FRCM: A fuzzy rough c-means clustering method

数学 模糊聚类 火焰团簇 模糊逻辑 数据挖掘 模糊分类 模糊集 聚类分析 模式识别(心理学) 模糊集运算 去模糊化 人工智能 模糊数 计算机科学 CURE数据聚类算法 统计
作者
Bin Yu,Zijian Zheng,Mingjie Cai,Witold Pedrycz,Weiping Ding
出处
期刊:Fuzzy Sets and Systems [Elsevier BV]
卷期号:480: 108860-108860 被引量:10
标识
DOI:10.1016/j.fss.2024.108860
摘要

Fuzzy c-means (FCM) clustering is a clustering method based on fuzzy theory. This method shows good adaptability by assigning membership values to each sample to represent the degree of membership of the sample to each cluster. However, when dealing with fuzzy boundary data, FCM also generates uncertainty and randomness, which in turn affects the accuracy of clustering results and the number of iterations required for algorithm convergence. In order to solve this problem, fuzzy rough set, as a method of dealing with uncertain data, provides a more accurate and strict description method for the processing of boundary data. Considering this advantage, this paper proposes a new fuzzy rough c-means (FRCM) clustering algorithm to improve the performance and iteration efficiency of FCM. Specifically, in this paper, the similarity based on the Gaussian kernel and the membership information of the object for each cluster are firstly used to construct a fuzzy rough set model to describe the fuzzy roughness between the object and the cluster center, which is used to more accurately represent the relationship between the object and the cluster. Secondly, based on the fuzzy rough model, the fuzzy rough degree of the object is calculated, which is used to describe the approximation degree of the object to the center of each cluster. This fuzzy expression can better handle the fuzzy boundary problem between the object and the cluster center, thereby improving the clustering results and enhancing interpretability. Finally, based on fuzzy rough degree information, the FRCM algorithm is designed. The experimental results show that our proposed method has better performance compared to other comparative clustering methods on both synthetic and real datasets. Specifically, compared to FCM, this algorithm exhibits higher iteration efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好完成签到 ,获得积分10
3秒前
cc完成签到,获得积分10
6秒前
卓初露完成签到 ,获得积分10
9秒前
zhilianghui0807完成签到 ,获得积分10
12秒前
又又完成签到,获得积分10
17秒前
652183758完成签到 ,获得积分10
19秒前
holy完成签到 ,获得积分10
25秒前
笨笨忘幽完成签到,获得积分10
30秒前
阿拉完成签到,获得积分10
32秒前
CQ完成签到 ,获得积分10
45秒前
liuliu完成签到 ,获得积分10
45秒前
罗鸯鸯完成签到,获得积分10
48秒前
Daisy完成签到 ,获得积分10
50秒前
yangjoy完成签到 ,获得积分10
50秒前
back you up应助科研通管家采纳,获得50
52秒前
罗鸯鸯发布了新的文献求助10
53秒前
hyxu678完成签到,获得积分10
54秒前
1分钟前
饼干发布了新的文献求助10
1分钟前
在水一方应助JING采纳,获得10
1分钟前
哈拉斯完成签到,获得积分10
1分钟前
1分钟前
大力的诗蕾完成签到 ,获得积分10
1分钟前
罗鸯鸯发布了新的文献求助10
1分钟前
周小鱼完成签到,获得积分10
1分钟前
wishe完成签到,获得积分10
1分钟前
fzh发布了新的文献求助10
1分钟前
shyxia完成签到 ,获得积分10
1分钟前
弧光完成签到 ,获得积分10
1分钟前
Sanmo完成签到,获得积分10
1分钟前
Curry完成签到 ,获得积分10
1分钟前
草木完成签到,获得积分20
1分钟前
闾丘惜寒完成签到,获得积分10
1分钟前
李崋壹完成签到 ,获得积分10
1分钟前
长安乱世完成签到 ,获得积分0
1分钟前
CLTTT完成签到,获得积分10
1分钟前
温馨完成签到 ,获得积分10
1分钟前
科研通AI5应助饼干采纳,获得30
1分钟前
2分钟前
DY完成签到,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336787
关于积分的说明 10282126
捐赠科研通 3053566
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468