芦荟
食品包装
材料科学
壳聚糖
食品科学
扫描电子显微镜
加勒比
结晶度
化学工程
化学
复合材料
植物
有机化学
传统医学
医学
生物
工程类
作者
Navjot Kaur,Chandran Somasundram,Zuliana Razali,Abdel‐Hamid I. Mourad,Fathalla Hamed,Zienab F. R. Ahmed
出处
期刊:Polymers
[MDPI AG]
日期:2024-01-15
卷期号:16 (2): 242-242
被引量:57
标识
DOI:10.3390/polym16020242
摘要
Food bioactive packaging has received increasing attention from consumers and the food industry for its potential to reduce food waste and environmental issues. Several materials can be used to produce edible films/coats; however, bio-based, cost-effective, and sustainable coatings have gained a high reputation these days. For instance, Aloe vera gel (AV) is a promising bio-based material for edible coatings and films; therefore, the present study aimed to investigate the film-forming abilities of AV and Chitosan (CH) combination as a potential active food packaging material. The physicochemical and mechanical characteristics of formed films of various combinations were prepared at different concentrations, i.e., CH (0.5% w/v), AV (100%), CH:AV (75:25), and CH:AV (60:40). The results showed significant differences among all the prepared edible films wherein these differences were mainly on account of incorporating AV gel. The rheological and antioxidant properties of the formulations improved with the inclusion of AV gel. The films composed of CH:AV (60:40) positively affected the water solubility, thermal properties, and water vapour permeability of the edible films. The X-ray Diffraction (XRD) and Scanning electron microscopy (SEM) results showed that the films composed of CH:AV, (60:40) were amorphous and had smooth morphology. Further, the edible film solutions were applied to fresh figs (Ficus carica) to investigate their role in preserving fruits during storage. A significant reduction in microbial growth was found in coated fruits after 28 days of cold storage. The films composed of CH and AV showed overall improved results compared to the CH (0.5%, w/v). Therefore, the used formulations (CH:AV, 60:40) can form a sustainable film that has the potential to be utilized for fresh product preservation to maintain its quality and shelf life.
科研通智能强力驱动
Strongly Powered by AbleSci AI