已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomics on spatial‐temporal manifolds via Fokker–Planck dynamics

体素 计算机科学 噪音(视频) 人工智能 算法 歧管(流体力学) 偏微分方程 动态增强MRI 转化(遗传学) 模式识别(心理学) 系列(地层学) 高斯分布 无线电技术 统计物理学 数学 图像(数学) 物理 数学分析 放射科 工程类 磁共振成像 古生物学 基因 生物 机械工程 化学 医学 量子力学 生物化学
作者
Jack B. Stevens,Breylon A. Riley,Jihyeon Je,Yuan Gao,Chunhao Wang,Yvonne M. Mowery,David M. Brizel,F Yin,Jian‐Guo Liu,Kyle J. Lafata
出处
期刊:Medical Physics [Wiley]
卷期号:51 (5): 3334-3347 被引量:4
标识
DOI:10.1002/mp.16905
摘要

Abstract Background Delta radiomics is a high‐throughput computational technique used to describe quantitative changes in serial, time‐series imaging by considering the relative change in radiomic features of images extracted at two distinct time points. Recent work has demonstrated a lack of prognostic signal of radiomic features extracted using this technique. We hypothesize that this lack of signal is due to the fundamental assumptions made when extracting features via delta radiomics, and that other methods should be investigated. Purpose The purpose of this work was to show a proof‐of‐concept of a new radiomics paradigm for sparse, time‐series imaging data, where features are extracted from a spatial‐temporal manifold modeling the time evolution between images, and to assess the prognostic value on patients with oropharyngeal cancer (OPC). Methods To accomplish this, we developed an algorithm to mathematically describe the relationship between two images acquired at time and . These images serve as boundary conditions of a partial differential equation describing the transition from one image to the other. To solve this equation, we propagate the position and momentum of each voxel according to Fokker–Planck dynamics (i.e., a technique common in statistical mechanics). This transformation is driven by an underlying potential force uniquely determined by the equilibrium image. The solution generates a spatial‐temporal manifold (3 spatial dimensions + time) from which we define dynamic radiomic features. First, our approach was numerically verified by stochastically sampling dynamic Gaussian processes of monotonically decreasing noise. The transformation from high to low noise was compared between our Fokker–Planck estimation and simulated ground‐truth. To demonstrate feasibility and clinical impact, we applied our approach to 18 F‐FDG‐PET images to estimate early metabolic response of patients ( n = 57) undergoing definitive (chemo)radiation for OPC. Images were acquired pre‐treatment and 2‐weeks intra‐treatment (after 20 Gy). Dynamic radiomic features capturing changes in texture and morphology were then extracted. Patients were partitioned into two groups based on similar dynamic radiomic feature expression via k‐means clustering and compared by Kaplan–Meier analyses with log‐rank tests ( p < 0.05). These results were compared to conventional delta radiomics to test the added value of our approach. Results Numerical results confirmed our technique can recover image noise characteristics given sparse input data as boundary conditions. Our technique was able to model tumor shrinkage and metabolic response. While no delta radiomics features proved prognostic, Kaplan–Meier analyses identified nine significant dynamic radiomic features. The most significant feature was Gray‐Level‐Size‐Zone‐Matrix gray‐level variance ( p = 0.011), which demonstrated prognostic improvement over its corresponding delta radiomic feature ( p = 0.722). Conclusions We developed, verified, and demonstrated the prognostic value of a novel, physics‐based radiomics approach over conventional delta radiomics via data assimilation of quantitative imaging and differential equations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenjingjing发布了新的文献求助10
2秒前
周章兵完成签到,获得积分20
2秒前
陈思发布了新的文献求助10
2秒前
野猪完成签到,获得积分10
3秒前
犹豫梦菡完成签到 ,获得积分10
3秒前
谦让晓晓完成签到 ,获得积分10
4秒前
牛马完成签到 ,获得积分10
4秒前
陈sama完成签到,获得积分10
5秒前
6秒前
SciGPT应助zzm采纳,获得10
6秒前
科研通AI6.1应助zzm采纳,获得10
6秒前
科研通AI6.1应助zzm采纳,获得30
7秒前
科研通AI6.1应助zzm采纳,获得10
7秒前
科研通AI6.1应助zzm采纳,获得10
7秒前
科研通AI6.1应助zzm采纳,获得30
7秒前
周章兵发布了新的文献求助10
9秒前
czy完成签到 ,获得积分10
9秒前
Lucas应助语嘘嘘采纳,获得10
12秒前
白色杏林糖完成签到,获得积分10
12秒前
13秒前
joy123完成签到 ,获得积分10
13秒前
姜姗完成签到 ,获得积分10
14秒前
等待冰之完成签到 ,获得积分10
16秒前
16秒前
Cl发布了新的文献求助10
17秒前
舒心谷雪完成签到 ,获得积分10
17秒前
18秒前
著名番茄发布了新的文献求助10
19秒前
李健的小迷弟应助黄金采纳,获得10
22秒前
22秒前
wang完成签到,获得积分10
22秒前
语嘘嘘发布了新的文献求助10
23秒前
俊逸沛菡完成签到 ,获得积分10
24秒前
善学以致用应助LONG采纳,获得10
25秒前
25秒前
25秒前
程暮光发布了新的文献求助10
26秒前
Li完成签到,获得积分10
26秒前
26秒前
霸气南珍完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772064
求助须知:如何正确求助?哪些是违规求助? 5595843
关于积分的说明 15429020
捐赠科研通 4905213
什么是DOI,文献DOI怎么找? 2639255
邀请新用户注册赠送积分活动 1587179
关于科研通互助平台的介绍 1542049