生物
ESCRT公司
生物发生
外体
细胞生物学
微泡
微泡
整合素
内体
细胞
基因
小RNA
生物化学
细胞内
作者
Yu Jin Lee,Kyeong Jin Shin,Hyun‐Jun Jang,Jin‐Sun Ryu,Chae Young Lee,Jong Hyuk Yoon,Jeong Kon Seo,Sabin Park,Semin Lee,A Reum Je,Yang Hoon Huh,Sun‐Young Kong,Taejoon Kwon,Pann‐Ghill Suh,Young Chan Chae
标识
DOI:10.1016/j.devcel.2023.01.006
摘要
Summary
Exosomes transport a variety of macromolecules and modulate intercellular communication in physiology and disease. However, the regulation mechanisms that determine exosome contents during exosome biogenesis remain poorly understood. Here, we find that GPR143, an atypical GPCR, controls the endosomal sorting complex required for the transport (ESCRT)-dependent exosome biogenesis pathway. GPR143 interacts with HRS (an ESCRT-0 Subunit) and promotes its association to cargo proteins, such as EGFR, which subsequently enables selective protein sorting into intraluminal vesicles (ILVs) in multivesicular bodies (MVBs). GPR143 is elevated in multiple cancers, and quantitative proteomic and RNA profiling of exosomes in human cancer cell lines showed that the GPR143-ESCRT pathway promotes secretion of exosomes that carry unique cargo, including integrins signaling proteins. Through gain- and loss-of-function studies in mice, we show that GPR143 promotes metastasis by secreting exosomes and increasing cancer cell motility/invasion through the integrin/FAK/Src pathway. These findings provide a mechanism for regulating the exosomal proteome and demonstrate its ability to promote cancer cell motility.
科研通智能强力驱动
Strongly Powered by AbleSci AI