An explainable and interpretable model for attention deficit hyperactivity disorder in children using EEG signals

可解释性 脑电图 注意缺陷多动障碍 人工智能 心情 灵敏度(控制系统) 机器学习 计算机科学 心理学 模式识别(心理学) 认知心理学 听力学 精神科 医学 电子工程 工程类
作者
Smith K. Khare,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:155: 106676-106676 被引量:50
标识
DOI:10.1016/j.compbiomed.2023.106676
摘要

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects a person's sleep, mood, anxiety, and learning. Early diagnosis and timely medication can help individuals with ADHD perform daily tasks without difficulty. Electroencephalogram (EEG) signals can help neurologists to detect ADHD by examining the changes occurring in it. The EEG signals are complex, non-linear, and non-stationary. It is difficult to find the subtle differences between ADHD and healthy control EEG signals visually. Also, making decisions from existing machine learning (ML) models do not guarantee similar performance (unreliable).The paper explores a combination of variational mode decomposition (VMD), and Hilbert transform (HT) called VMD-HT to extract hidden information from EEG signals. Forty-one statistical parameters extracted from the absolute value of analytical mode functions (AMF) have been classified using the explainable boosted machine (EBM) model. The interpretability of the model is tested using statistical analysis and performance measurement. The importance of the features, channels and brain regions has been identified using the glass-box and black-box approach. The model's local and global explainability has been visualized using Local Interpretable Model-agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), Partial Dependence Plot (PDP), and Morris sensitivity. To the best of our knowledge, this is the first work that explores the explainability of the model prediction in ADHD detection, particularly for children.Our results show that the explainable model has provided an accuracy of 99.81%, a sensitivity of 99.78%, 99.84% specificity, an F-1 measure of 99.83%, the precision of 99.87%, a false detection rate of 0.13%, and Mathew's correlation coefficient, negative predicted value, and critical success index of 99.61%, 99.73%, and 99.66%, respectively in detecting the ADHD automatically with ten-fold cross-validation. The model has provided an area under the curve of 100% while the detection rate of 99.87% and 99.73% has been obtained for ADHD and HC, respectively.The model show that the interpretability and explainability of frontal region is highest compared to pre-frontal, central, parietal, occipital, and temporal regions. Our findings has provided important insight into the developed model which is highly reliable, robust, interpretable, and explainable for the clinicians to detect ADHD in children. Early and rapid ADHD diagnosis using robust explainable technologies may reduce the cost of treatment and lessen the number of patients undergoing lengthy diagnosis procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是小张完成签到 ,获得积分10
1秒前
mly完成签到 ,获得积分10
3秒前
张宇鑫完成签到,获得积分10
7秒前
Ding-Ding完成签到,获得积分10
8秒前
倩倩完成签到 ,获得积分10
11秒前
HuanChen完成签到 ,获得积分10
13秒前
huge完成签到,获得积分20
13秒前
川藏客完成签到,获得积分10
14秒前
迅速访文完成签到,获得积分10
14秒前
青菜完成签到,获得积分10
17秒前
马麻薯完成签到,获得积分10
17秒前
小离完成签到,获得积分10
18秒前
希哩哩完成签到 ,获得积分10
19秒前
迅速大山完成签到,获得积分10
21秒前
三岁完成签到 ,获得积分10
26秒前
满意的伊完成签到,获得积分10
28秒前
喜悦蚂蚁完成签到,获得积分10
29秒前
SharonDu完成签到 ,获得积分10
29秒前
liuchang完成签到 ,获得积分10
32秒前
soda饼干完成签到 ,获得积分10
34秒前
可问春风完成签到,获得积分10
35秒前
Daybreak完成签到 ,获得积分10
41秒前
越野蟹完成签到,获得积分10
41秒前
47秒前
laber完成签到,获得积分0
48秒前
木拉发布了新的文献求助10
53秒前
雨后完成签到 ,获得积分10
53秒前
53秒前
科目三应助嘻嘻哈哈采纳,获得10
54秒前
能干靖儿应助嘻嘻哈哈采纳,获得40
54秒前
能干靖儿应助嘻嘻哈哈采纳,获得60
54秒前
能干靖儿应助嘻嘻哈哈采纳,获得70
54秒前
能干靖儿应助嘻嘻哈哈采纳,获得70
54秒前
kyle完成签到 ,获得积分10
59秒前
三杠完成签到 ,获得积分10
1分钟前
无限晓蓝完成签到 ,获得积分10
1分钟前
GLv完成签到,获得积分10
1分钟前
彭于晏应助边边角角落落采纳,获得10
1分钟前
yinshan完成签到 ,获得积分10
1分钟前
烂漫笑晴完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294026
求助须知:如何正确求助?哪些是违规求助? 4444005
关于积分的说明 13831938
捐赠科研通 4327985
什么是DOI,文献DOI怎么找? 2375883
邀请新用户注册赠送积分活动 1371153
关于科研通互助平台的介绍 1336208