已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiparameter Identification of Bridge Cables Using XGBoost Algorithm

鉴定(生物学) 桥(图论) 振动 算法 计算机科学 刚度 工程类 结构工程 极限学习机 张力(地质) 人工智能 人工神经网络 声学 医学 植物 物理 经典力学 内科学 生物 力矩(物理)
作者
He Zhang,Yuhui Zhou,Zhangyou Huang,Ruihong Shen,Yidan Wu
出处
期刊:Journal of Bridge Engineering [American Society of Civil Engineers]
卷期号:28 (5) 被引量:18
标识
DOI:10.1061/jbenf2.beeng-6021
摘要

Accurately identifying tension force on cables is of great significance for construction control and the operational status assessment of a bridge during its lifetime. Unlike the conventional vibration methods that encounter problems in the inaccurate identification of short cables and difficulties when identifying multiparameters simultaneously, when solving the vibration differential equation inversely, a novel strategy was proposed that was based on an intelligent algorithm for cable parameter monitoring onsite. The Extreme Gradient Boosting (XGBoost) model was employed to establish the mapping relationship between the natural frequencies of the cable and its tension, bending stiffness, and boundary conditions through data mining. The results revealed that when the measured natural frequencies of a cable were fed into the XGBoost model, the previously mentioned multiparameters could be identified simultaneously with a relative error of <5%. Meanwhile, the proposed intelligent method with the XGBoost algorithm produced a more accurate identification of the cable parameters than the extreme learning machine (ELM) and conventional vibration methods. The current intelligent strategy might provide efficient tools for the simultaneous identification of multiple parameters in cables and, therefore, might facilitate policy decisions for the structural maintenance of cable-supported bridges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
basil完成签到,获得积分10
1秒前
2秒前
WBC发布了新的文献求助30
2秒前
pearlwh1227发布了新的文献求助10
3秒前
邢哥哥完成签到,获得积分10
3秒前
乐乐应助li采纳,获得10
4秒前
乐乐应助TingtingGZ采纳,获得10
4秒前
4秒前
闫伏龙发布了新的文献求助10
6秒前
7秒前
8秒前
不秃不秃完成签到 ,获得积分10
9秒前
Flowingscenery完成签到,获得积分10
10秒前
12秒前
我爱灌肠发布了新的文献求助10
12秒前
WBC完成签到,获得积分10
14秒前
WDD完成签到,获得积分10
14秒前
科研通AI2S应助he采纳,获得10
15秒前
15秒前
15秒前
NexusExplorer应助马伊采纳,获得10
16秒前
17秒前
Taxwitted应助白夜采纳,获得30
18秒前
斯文败类应助现实的忆灵采纳,获得30
18秒前
Kiwi完成签到 ,获得积分10
19秒前
19秒前
li发布了新的文献求助10
20秒前
花笙米发布了新的文献求助10
21秒前
迅速的完成签到 ,获得积分10
22秒前
JamesPei应助去月球数星星采纳,获得10
24秒前
24秒前
彭于晏应助小吕采纳,获得10
25秒前
25秒前
26秒前
Taxwitted应助lawang采纳,获得20
27秒前
CodeCraft应助lawang采纳,获得20
27秒前
怡然的飞丹完成签到,获得积分10
28秒前
CodeCraft应助刘善宁采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475942
求助须知:如何正确求助?哪些是违规求助? 4577610
关于积分的说明 14362245
捐赠科研通 4505491
什么是DOI,文献DOI怎么找? 2468706
邀请新用户注册赠送积分活动 1456339
关于科研通互助平台的介绍 1429950